ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Automated and Certified Refinement Steps

420   0   0.0 ( 0 )
 نشر من قبل Charles Morisset
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The refinement calculus provides a methodology for transforming an abstract specification into a concrete implementation, by following a succession of refinement rules. These rules have been mechanized in theorem-provers, thus providing a formal and rigorous way to prove that a given program refines another one. In a previous work, we have extended this mechanization for object-oriented programs, where the memory is represented as a graph, and we have integrated our approach within the rCOS tool, a model-driven software development tool providing a refinement language. Hence, for any refinement step, the tool automatically generates the corresponding proof obligations and the user can manually discharge them, using a provided library of refinement lemmas. In this work, we propose an approach to automate the search of possible refinement rules from a program to another, using the rewriting tool Maude. Each refinement rule in Maude is associated with the corresponding lemma in Isabelle, thus allowing the tool to automatically generate the Isabelle proof when a refinement rule can be automatically found. The user can add a new refinement rule by providing the corresponding Maude rule and Isabelle lemma.



قيم البحث

اقرأ أيضاً

The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. As manual bug assignment is a labor-intensive task, especially for large- scale software projects, many machine-learning-based approaches have been proposed to automatically triage bug reports. Although developer collaboration networks (DCNs) are dynamic and evolving in the real-world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample local topological structures in a graph with two sampling strategies by considering both node importance and edge importance. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of dynamic DCNs. We evaluated our approachs effectiveness by comparing it with several state-of-the-art graph representation learning methods in two domain-specific tasks that belong to node classification. In the two tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods.
Fuzzing is a commonly used technique designed to test software by automatically crafting program inputs. Currently, the most successful fuzzing algorithms emphasize simple, low-overhead strategies with the ability to efficiently monitor program state during execution. Through compile-time instrumentation, these approaches have access to numerous aspects of program state including coverage, data flow, and heterogeneous fault detection and classification. However, existing approaches utilize blind random mutation strategies when generating test inputs. We present a different approach that uses this state information to optimize mutation operators using reinforcement learning (RL). By integrating OpenAI Gym with libFuzzer we are able to simultaneously leverage advancements in reinforcement learning as well as fuzzing to achieve deeper coverage across several varied benchmarks. Our technique connects the rich, efficient program monitors provided by LLVM Santizers with a deep neural net to learn mutation selection strategies directly from the input data. The cross-language, asynchronous architecture we developed enables us to apply any OpenAI Gym compatible deep reinforcement learning algorithm to any fuzzing problem with minimal slowdown.
Logs are imperative in the development and maintenance process of many software systems. They record detailed runtime information that allows developers and support engineers to monitor their systems and dissect anomalous behaviors and errors. The in creasing scale and complexity of modern software systems, however, make the volume of logs explodes. In many cases, the traditional way of manual log inspection becomes impractical. Many recent studies, as well as industrial tools, resort to powerful text search and machine learning-based analytics solutions. Due to the unstructured nature of logs, a first crucial step is to parse log messages into structured data for subsequent analysis. In recent years, automated log parsing has been widely studied in both academia and industry, producing a series of log parsers by different techniques. To better understand the characteristics of these log parsers, in this paper, we present a comprehensive evaluation study on automated log parsing and further release the tools and benchmarks for easy reuse. More specifically, we evaluate 13 log parsers on a total of 16 log datasets spanning distributed systems, supercomputers, operating systems, mobile systems, server applications, and standalone software. We report the benchmarking results in terms of accuracy, robustness, and efficiency, which are of practical importance when deploying automated log parsing in production. We also share the success stories and lessons learned in an industrial application at Huawei. We believe that our work could serve as the basis and provide valuable guidance to future research and deployment of automated log parsing.
Logs are semi-structured text generated by logging statements in software source code. In recent decades, software logs have become imperative in the reliability assurance mechanism of many software systems because they are often the only data availa ble that record software runtime information. As modern software is evolving into a large scale, the volume of logs has increased rapidly. To enable effective and efficient usage of modern software logs in reliability engineering, a number of studies have been conducted on automated log analysis. This survey presents a detailed overview of automated log analysis research, including how to automate and assist the writing of logging statements, how to compress logs, how to parse logs into structured event templates, and how to employ logs to detect anomalies, predict failures, and facilitate diagnosis. Additionally, we survey work that releases open-source toolkits and datasets. Based on the discussion of the recent advances, we present several promising future directions toward real-world and next-generation automated log analysis.
147 - Changwang Zhang , Shi Zhou , 2015
LeoTask is a Java library for computation-intensive and time-consuming research tasks. It automatically executes tasks in parallel on multiple CPU cores on a computing facility. It uses a configuration file to enable automatic exploration of paramete r space and flexible aggregation of results, and therefore allows researchers to focus on programming the key logic of a computing task. It also supports reliable recovery from interruptions, dynamic and cloneable networks, and integration with the plotting software Gnuplot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا