ترغب بنشر مسار تعليمي؟ اضغط هنا

Volovik effect on NMR measurements of unconventional superconuctors

155   0   0.0 ( 0 )
 نشر من قبل Yunkyu Bang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yunkyu Bang




اسأل ChatGPT حول البحث

We studied the Volovik effect on the NMR measurements of the two unconventional superconducting (SC) states, the d-wave and $pm$s-wave states. We showed the generic field dependencies of the spin-lattice relaxation rate $1/T_1$ and Knight shift $K$ at low temperature limit in the pure cases as: $1/T_1 propto H log H$, $K propto sqrt{H}$ for the d-wave, and $1/T_1 propto H$, $K propto H$ for the $pm$s-wave state, respectively. Performing numerical calculations we showed that these generic power laws survive for the good part of low field region with the realistic amount of impurities. We also found that the Volovik effect acts as an equivalent pair breaker as the unitary impurity scattering, hence induces the same temperature evolutions on $1/T_1$ and $K$, respectively, as the unitary impurities in both SC states. This finding implies that the Volovik effect should always be taken into account for the analysis of the NMR measurements in the mixed state.


قيم البحث

اقرأ أيضاً

Impurity nuclear spin relaxation is studied theoretically. A single impurity generates a bound state localized around the impurity atom in unconventional superconductors. With increasing impurity potential, the relaxation rate $T_1^{-1}$ is reduced b y the impurity potential. However, it has a peak at low temperatures due to the impurity bound state. The peak disappears at non-impurity sites. The impurity site NMR measurement detecting a local electronic structure just on the impurity atom is very useful for identifying the unconventional pairing states.
A new type of Kondo effect peculiar to unconventional superconductors is studied theoretically by using the Wilsons numerical renormalization group method. In this case, an angular momentum of a Cooper pair plays an important role in the Kondo effect . It produces multichannel exchange couplings with a local spin. Here we focus on a $p_x +i p_y$-wave state which is a full gap system. The calculated impurity susceptibility shows that the local spin is almost quenched by the Kondo effect in the strong coupling region ($T_{rm K}/Delta to infty$), while the ground state is always a spin doublet over all the $T_{rm K}/Delta$ region. Here $T_{rm K}$ and $Delta$ are the Kondo temperature and the superconducting energy gap, respectively. This is different from the s-wave pairing case where the Kondo singlet is realized for large $T_{rm K}/Delta$ values. The strong coupling analysis shows that the $p_x +i p_y$-wave Cooper pair is connected to the Kondo singlet via the orbital dynamics of the paired electrons, generating the spin of the ground state. This type of Kondo effect reflects the symmetry of the conduction electron system.
The effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate, $W$, is studied in a complete phase diagram of a 2D superconductor above the upper critical field line $H_{c2}(T)$ . In the region of relatively high temperatures and low magnetic fields, the relaxation rate $W$ is determined by two competing effects. The first one is its decrease in result of suppression of quasi-particle density of states (DOS) due to formation of fluctuation Cooper pairs (FCP). The second one is a specific, purely quantum, relaxation process of the Maki-Thompson (MT) type, which for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length $l_{phi }$ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal metal - type-II superconductor transition. The character of fluctuations changes along the line $H_{c2}$ from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCP in fields comparable to $H_{c2}$. We find that below the well-defined temperature $T^*_0approx 0.6T_{c0}$, the MT process becomes ineffective even in absence of intrinsic pair-breaking. The small scale of FCP rotations ($xi_{xy}$) in so high fields impedes formation of long (<$l_{phi }$) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasi-particle DOS, analogously to the Abrikosov vortex phase below the $H_{c2}$ line.
We report the sulfur isotope effect on transition temperature in a BiS2-based superconductor Bi4O4S3. Polycrystalline samples of Bi4O4S3 were prepared using 32S and 34S isotope chemicals. From magnetization analyses, the isotope exponent (aS) was est imated as -0.1 < aS < 0.1. Although the Tc estimated from electrical resistivity was scattered as compared to those estimated from the magnetization, we observed no clear correlation between Tc and the isotope mass. The present results suggest that unconventional paring states are essential in Bi4O4S3.
We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field $ac$-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero te mperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا