ﻻ يوجد ملخص باللغة العربية
We study the Regge and hard scattering limits of the one-loop amplitude for massless open string states in the type I theory. For hard scattering we find the exact coefficient multiplying the known exponential falloff in terms of the scattering angle, without relying on a saddle point approximation for the integration over the cross ratio. This bypasses the issues of estimating the contributions from flat directions, as well as those that arise from fluctuations of the gaussian integration about a saddle point. This result allows for a straightforward computation of the small- angle behavior of the hard scattering regime and we find complete agreement with the Regge limit at high momentum transfer, as expected.
In the localization of 5-dimensional N = 1 super-Yang-Mills, contact-instantons arise as non-perturbative contributions. In this note, we revisit such configurations and discuss their generalizations. We propose for contact-instantons a cohomological
In the previous papers, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background. This was confirmed by agreement between planar correlation
The section condition of Double Field Theory has been argued to mean that doubled coordinates are gauged: a gauge orbit represents a single physical point. In this note, we consider a doubled and at the same time gauged particle action, and show that
It is shown that the quantum ground state energy of particle of mass m and electric charge e moving on a compact Riemann surface under the influence of a constant magnetic field of strength B is E_0=eB/2m. Remarkably, this formula is completely indep
A definition of quasi-local energy in a gravitational field based upon its embedding into flat space is discussed. The outcome is not satisfactory from many points of view.