ﻻ يوجد ملخص باللغة العربية
We study Hardy spaces $H^p_ u$ of the conjugate Beltrami equation $bar{partial} f= ubar{partial f}$ over Dini-smooth finitely connected domains, for real contractive $ uin W^{1,r}$ with $r>2$, in the range $r/(r-1)<p<infty$. We develop a theory of conjugate functions and apply it to solve Dirichlet and Neumann problems for the conductivity equation $ abla.(sigma abla u)=0$ where $sigma=(1- u)/(1+ u)$. In particular situations, we also consider some density properties of traces of solutions together with boundary approximation issues.
We provide a new approach to studying the Dirichlet-Neumann map for Laplaces equation on a convex polygon using Fokas unified method for boundary value problems. By exploiting the complex analytic structure inherent in the unified method, we provide
This paper is devoted to the study of reducing subspaces for multiplication operator $M_phi$ on the Dirichlet space with symbol of finite Blaschke product. The reducing subspaces of $M_phi$ on the Dirichlet space and Bergman space are related. Our st
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose rest
We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form $k(s,u) = sum a_n n^{-s-bar u}$, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o