ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-dependent Raman study of CeFeAsO0.9F0.1 Superconductor: Crystal field excitations, phonons and their coupling

145   0   0.0 ( 0 )
 نشر من قبل Pradeep Khatri Mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report temperature-dependent Raman spectra of CeFeAsO0.9F0.1 from 4 K to 300 K in spectral range of 60 to 1800 cm-1 and interpret them using estimates of phonon frequencies obtained from first-principles density functional calculations. We find evidence for a strong coupling between the phonons and crystal field excitations; in particular Ce3+ crystal field excitation at 432 cm-1 couples strongly with Eg oxygen vibration at 389 cm-1 . Below the superconducting transition temperature, the phonon mode near 280 cm-1 shows softening, signaling its coupling with the superconducting gap. The ratio of the superconducting gap to Tc thus estimated to be ~ 10 suggests CeFeAsO0.9F0.1 as a strong coupling superconductor. In addition, two high frequency modes observed at 1342 cm-1 and 1600 cm-1



قيم البحث

اقرأ أيضاً

We report comprehensive Raman-scattering measurements on a single crystal of double-perovskite Nd2ZnIrO6 in temperature range of 4-330 K, and spanning a broad spectral range from 20 cm-1 to 5500 cm-1. The paper focuses on lattice vibrations and elect ronic transitions involving Kramers doublets of the rare-earth Nd3+ ion with local C1 site symmetry. Temperature evolution of these quasi-particle excitations have allowed us to ascertain the intricate coupling between lattice and electronic degrees of freedom in Nd2ZnIrO6. Strong coupling between phonons and crystal-field excitation is observed via renormalization of the self-energy parameter of the phonons i.e. peak frequency and line-width. The phonon frequency shows abrupt hardening and line-width narrowing below ~ 100 K for the majority of the observed first-order phonons. We observed splitting of the lowest Kramers doublets of ground state (4I9/2) multiplets i.e. lifting of the Kramers degeneracy, prominently at low-temperature (below ~ 100 K), attributed to the Nd-Nd/Ir exchange interactions and the intricate coupling with the lattice degrees of freedom. The observed splitting is of the order of ~ 2-3 meV and is consistent with the estimated value. We also observed a large number of high-energy modes, 46 in total, attributed to the intra-configurational transitions between 4f3 levels of Nd3+ coupled to the phonons reflected in their anomalous temperature evolution.
High quality single crystals of Bi2Se3 were grown using a modified Bridgman technique, the detailed study were carried out using Raman spectroscopy and characterized by Laue diffraction and high resolution transmission electron microscopy. Polarized Raman scattering measurements were also carried out, and both the A1g and A2g phonon modes showed strong polarization effect, which is consistent with the theoretical prediction. The temperature dependent study (in the temperature range 83 K to 523 K of Raman active modes were reported and observed to follow a systematic red shift. The frequency of these phonon modes are found to vary linearly with temperature and can be explained by first order temperature co-efficient. The temperature co-efficient for A11g, E2g and A21g modes were estimated to be -1.44*10-2, -1.94*10-2 and -1.95*10-2cm-1/K respectively.
148 - Y. Xiao , M. Zbiri , R. A. Downie 2013
Inelastic neutron scattering experiments were performed to investigate the crystalline electric field (CEF) excitations of Nd3+ (J = 9/2) in the iron pnictide NdFeAsO. The crystal field level structures for both the high-temperature paramagnetic phas e and the low-temperature antiferromagnetic phase of NdFeAsO are constructed. The variation of CEF excitations of Nd3+ reflects not only the change of local symmetry but also the change of magnetic ordered state of the Fe sublattice. By analyzing the crystal field interaction with a crystal field Hamiltonian, the crystal field parameters are obtained. It was found that the sign of the fourth and sixth-order crystal field parameters change upon the magnetic phase transition at 140 K, which may be due to the variation of exchange interactions between the 4f and conduction electrons.
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm-1 from 5K to 300K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160K. The mode frequ encies of two first-order Raman modes B1g and Eg, both involving displacement of Fe atoms, show sharp increase below Tsm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below Tsm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400-1200 cm-1 are attributed to the electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be ~ 25 meV which increases as temperature decreases below Tsm. A broad Raman band observed at ~ 3200 cm-1 is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l ine widths. Our analysis reveals that the strong coupling of certain low energy modes is linked to the presence of large displacements of the light atoms, i.e. B and C, which is unusual in view of the rather low phonon energies. Specific modes exhibiting a strong coupling to the electronic quasiparticles were investigated as a function of temperature. Their energies and line widths showed marked changes on cooling from room temperature to just above the superconducting transition at Tc = 15.2 K. Calculations simulating the effects of temperature allow to model the observed temperature dependence qualitatively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا