ترغب بنشر مسار تعليمي؟ اضغط هنا

Ive Got the World on a Brane

207   0   0.0 ( 0 )
 نشر من قبل John Omotani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Omotani




اسأل ChatGPT حول البحث

This thesis treats several topics in the study of extra-dimensional models of the world, concerning Heterotic M-Theory and the dynamics of branes. We describe a reduction to five dimensions, over a Calabi-Yau manifold, of an improved version of Heterotic M-Theory, which is valid to all orders in the gravitational coupling. This provides a starting point for considering the consequences of the improved theory for the very fruitful phenomenology of the original. We investigate the singularities formed by the collision of gravitating branes in scalar field theory. By considering the asymptotic structure of the spacetime, the properties of the horizons formed and the growth of the curvature we argue that the singularity is not a black brane, as one might have expected, but rather a big crunch. Finally, we construct a restricted class of multi-galileon theories as braneworld models with codimension greater than one, developing in the process some of the formalism needed for the general construction.



قيم البحث

اقرأ أيضاً

In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular moment um in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
We study gravity on an infinitely thin codimension-2 brane world, with purely conical singularities and in the presence of an induced gravity term on the brane. We show that in this approximation, the energy momentum tensor of the bulk is strongly re lated to the energy momentum tensor of the brane and thus the gravity dynamics on the brane are induced by the bulk content. This is in contrast with the gravity dynamics on a codimension-1 brane. We show how this strong result is relaxed after including a Gauss-Bonnet term in the bulk.
We examine several different types of five dimensional stationary spacetimes with bulk scalar fields and parallel 3-branes. We study different methods for avoiding the appearance of spacetime singularities in the bulk for models with and without cosm ological expansion. For non-expanding models, we demonstrate that in general the Randall-Sundrum warp factor is recovered in the asymptotic bulk region, although elsewhere the warping may be steeper than exponential. We show that nonsingular expanding models can be constructed as long as the gradient of the bulk scalar field vanishes at zeros of the warp factor, which are then analogous to the particle horizons found in expanding models with a pure AdS bulk. Since the branes in these models are stabilized by bulk scalar fields, we expect there to be no linearly unstable radion modes. As an application, we find a specific class of expanding, stationary solutions with no singularities in the bulk in which the four dimensional cosmological constant and mass hierarchy are naturally very small.
We discuss supergravity inflation in braneworld cosmology for the class of potentials $V(phi)=alpha phi^nrm{exp}(-beta^m phi^m)$ with $m=1,~2$. These minimal SUGRA models evade the $eta$ problem due to a broken shift symmetry and can easily accommoda te the observational constraints. Models with smaller $n$ are preferred while models with larger $n$ are out of the $2sigma$ region. Remarkably, the field excursions required for $60$ $e$-foldings stay sub-planckian $Deltaphi <1$.
First order rotational perturbations of the Friedmann-Robertson-Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا