ﻻ يوجد ملخص باللغة العربية
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values of about 1 TeV. Assuming that hints for SUSY are found by the end of a 2 fb$^{-1}$ run, we explore the flavour constraints on the parameter space of the CMSSM, with and without massive neutrinos. In particular, we focus on decays that might have been measured by the time the run is concluded, such as $B_stomumu$ and $muto egamma$. We also briefly show the impact such a collider--flavour interplay would have on a Flavoured CMSSM.
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb$^{-1}$ run, we explore the
We consider an explicit effective field theory example based on the Bousso-Polchinski framework with a large number N of hidden sectors contributing to supersymmetry breaking. Each contribution comes from four form quantized fluxes, multiplied by ran
We propose an SU(5) SUSY GUT of flavour with A_4 family symmetry in 8d where the vacuum alignment is achieved in an elegant way by the use of boundary conditions on orbifolds. The model involves SU(5) living in the 8d bulk, with matter living in 6d (
Here we update the predictions for lepton flavour violating tau and muon decays, $l_j to l_i gamma$, $l_j to 3 l_i$, and $mu-e$ conversion in nuclei. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standa
We address the constraints on the SUSY seesaw parameters arising from Lepton Flavour Violation observables. Working in the Constrained Minimal Supersymmetric Standard Model extended by three right-handed (s)neutrinos, we study the predictions for the