ﻻ يوجد ملخص باللغة العربية
Core-collapse supernovae are among Natures grandest explosions. They are powered by the energy released in gravitational collapse and include a rich set of physical phenomena involving all fundamental forces and many branches of physics and astrophysics. We summarize the current state of core-collapse supernova theory and discuss the current set of candidate explosion mechanisms under scrutiny as core-collapse supernova modeling is moving towards self-consistent three-dimensional simulations. Recent work in nuclear theory and neutron star mass and radius measurements are providing new constraints for the nuclear equation of state. We discuss these new developments and their impact on core-collapse supernova modeling. Neutrino-neutrino forward scattering in the central regions of core-collapse supernovae can lead to collective neutrino flavor oscillations that result in swaps of electron and heavy-lepton neutrino spectra. We review the rapid progress that is being made in understanding these collective oscillations and their potential impact on the core-collapse supernova explosion mechanism.
We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of
How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed three-dimensional simulations of core-collapse supernovae. These are elucidating the role of fluid instab
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases