ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric propagation of electronic wave function through molecular bonding and anti-bonding states

65   0   0.0 ( 0 )
 نشر من قبل Muhammad Imran
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Muhammad Imran




اسأل ChatGPT حول البحث

Electron transport through molecular bridge shows novel quantum features. Propogation of electronic wave function through molecular bridge is completely different than individual atomic bridge employed between two contacts. In case of molecular bridge electronic wave propagators interfere and effect conduction through molecular bonding and anti-bonding states.In the present work i showed through simple calculation that interference of electronic wave propagators cause asymmetric propagation of electronic wave through bonding and anti-bonding state. While for hydrogenic molecule these propagators interfere completely destructively for bonding state and constructively for anti-bonding state, giving rise to only one peak in spectral function for anti- bonding state.


قيم البحث

اقرأ أيضاً

Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carryin g pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.
We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.
We study the electronic structure of diluted F atoms chemisorbed on graphene using density functional theory calculations. We show that the nature of the chemical bonding of a F atom adsorbed on top of a C atom in graphene strongly depends on carrier doping. In neutral samples the F impurities induce a sp^3-like bonding of the C atom below, generating a local distortion of the hexagonal lattice. As the graphene is electron-doped, the C atom retracts back to the graphene plane and for high doping (10^14 cm^-2) its electronic structure corresponds to a nearly pure sp^2 configuration. We interpret this sp^3-sp^2 doping-induced crossover in terms of a simple tight binding model and discuss the physical consequences of this change.
A generalized tight-binding model, which is based on the subenvelope functions of the different sublattices, is developed to explore the novel magnetic quantization in monolayer gray tin. The effects due to the $sp^{3}$ bonding, the spin-orbital coup ling, the magnetic field and the electric field are simultaneously taken into consideration. The unique magneto-electronic properties lie in two groups of low-lying Landau levels, with different orbital components, localization centers, state degeneracy, spin configurations, and magnetic- and electric-field dependences. The first and second groups mainly come from the $5p_{z}$ and ($5p_{x}$,$5p_{y}$) orbitals, respectively. Their Landau-level splittings are, respectively, induced by the electric field and spin-orbital interactions. The intragroup anti-crossings are only revealed in the former. The unique tinene Landau levels are absent in graphene, silicene and germanene.
In Raman spectroscopy of graphite and graphene, the $D$ band at $sim 1355$cm$^{-1}$ is used as the indication of the dirtiness of a sample. However, our analysis suggests that the physics behind the $D$ band is closely related to a very clear idea fo r describing a molecule, namely bonding and antibonding orbitals in graphene. In this paper, we review our recent work on the mechanism for activating the $D$ band at a graphene edge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا