ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical repumping of triplet $P$-states enhances magneto-optical trapping of ytterbium atoms

248   0   0.0 ( 0 )
 نشر من قبل Jaewook Ahn
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiative decay from the excited $^1P_1$ state to metastable $^3P_2$ and $^3P_0$ states is expected to limit attainable trapped atomic population in a magneto-optic trap of ytterbium (Yb) atoms. In experiments we have carried out with optical repumping of $^3P_{0,2}$ states to $^3P_1$, we observe enhancement of trapped atoms yield in the excited $^1P_1$ state. The individual decay rate to each metastable state is measured and the results show an excellent agreement with the theoretical values.



قيم البحث

اقرأ أيضاً

279 - M. Okano , H. Hara , M. Muramatsu 2009
We have successfully implemented the first simultaneous magneto-optical trapping (MOT) of lithium ($^6$Li) and ytterbium ($^{174}$Yb) atoms, towards production of ultracold polar molecules of LiYb. For this purpose, we developed the dual atomic oven which contains both atomic species as an atom source and successfully observed the spectra of the Li and Yb atoms in the atomic beams from the dual atomic oven. We constructed the vacuum chamber including the glass cell with the windows made of zinc selenium (ZnSe) for the CO$_2$ lasers, which are the useful light sources of optical trapping for evaporative and sympathetic cooling. Typical atom numbers and temperatures in the compressed MOT are 7$times10^3$ atoms, 640 $mu$K for $^6$Li, 7$times10^4$ atoms and 60 $mu$K for $^{174}$Yb, respectively.
We report the laser-cooling and confinement of Cd atoms in a magneto-optical trap, and characterize the loading process from the background Cd vapor. The trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron atom and also photoi onizes atoms directly from the 1P1 state. This photoionization overwhelms the other loss mechanisms and allows a direct measurement of the photoionization cross section, which we measure to be 2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold interactions between atoms and ions.
Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by compet ition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.
We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumpi ng and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity.
Laser cooling and trapping are central to modern atomic physics. The workhorse technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic spec ies, MOTs can capture and cool large numbers of particles to ultracold temperatures (<1 mK); this has enabled the study of a wide range of phenomena from optical clocks to ultracold collisions whilst also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. Here, we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 mK. This method is expected to be viable for a significant number of diatomic species. Such chemical diversity is desired for the wide array of existing and proposed experiments which employ molecules for applications ranging from precision measurement, to quantum simulation and quantum information, to ultracold chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا