ﻻ يوجد ملخص باللغة العربية
Experiments have been performed to measure magnetoelectric properties of room temperature spirally ordered Sr3Co2Fe24O41 hexaferrite slabs. The measured properties include the magnetic permeability, the magnetization and the strain all as a function of the electric field E and the magnetic intensity H. The material hexaferrite Sr3Co2Fe24O41 exhibits broken symmetries for both time reversal and parity. The product of the two symmetries remains unbroken. This is the central feature of these magnetoelectric materials. A simple physical model is proposed to explain the magnetoelectric effect in these materials.
The quantitative understanding of converse magnetoelectric effects, i.e., the variation of the magnetization as a function of an applied electric field, in extrinsic multiferroic hybrids is a key prerequisite for the development of future spintronic
Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, since ferromagnetism generally accompanies metallicity, FMIs are innately rare to find in nature. Here,
Mutual control of the electricity and magnetism in terms of magnetic (H) and electric (E) fields, the magnetoelectric (ME) effect, offers versatile low power-consumption alternatives to current data storage, logic gate, and spintronic devices. Despit
The advent of long-range magnetic order in non-centrosymmetric compounds has stimulated interest in the possibility of exotic spin transport phenomena and topologically protected spin textures for applications in next-generation spintronics. This wor
The oxide heterostructure [(YFeO$_3$)$_5$(LaFeO$_3$)$_5$]$_{40}$, which is magnetically ordered and piezoelectric at room temperature, has been constructed from two weak ferromagnetic AFeO$_3$ perovskites with different A cations using RHEED-monitore