ترغب بنشر مسار تعليمي؟ اضغط هنا

Convection and Differential Rotation Properties of G & K Stars Computed with the ASH Code

259   0   0.0 ( 0 )
 نشر من قبل Sean Matt
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sean P. Matt




اسأل ChatGPT حول البحث

The stellar luminosity and depth of the convective envelope vary rapidly with mass for G- and K-type main sequence stars. In order to understand how these properties influence the convective turbulence, differential rotation, and meridional circulation, we have carried out 3D dynamical simulations of the interiors of rotating main sequence stars, using the anelastic spherical harmonic (ASH) code. The stars in our simulations have masses of 0.5, 0.7, 0.9, and 1.1 M_sun, corresponding to spectral types K7 through G0, and rotate at the same angular speed as the sun. We identify several trends of convection zone properties with stellar mass, exhibited by the simulations. The convective velocities, temperature contrast between up- and down-flows, and meridional circulation velocities all increase with stellar luminosity. As a consequence of the trend in convective velocity, the Rossby number (at a fixed rotation rate) increases and the convective turnover timescales decrease significantly with increasing stellar mass. The 3 lowest mass cases exhibit solar-like differential rotation, in a sense that they show a maximum rotation at the equator and minimum at higher latitudes, but the 1.1 M_sun case exhibits anti-solar rotation. At low mass, the meridional circulation is multi-cellular and aligned with the rotation axis; as the mass increases, the circulation pattern tends toward a unicellular structure covering each hemisphere in the convection zone.



قيم البحث

اقرأ أيضاً

Rotational light modulation in Kepler photometry of K - A stars is used to estimate the absolute rotational shear. The rotation frequency spread in 2562 carefully selected stars with known rotation periods is measured using time-frequency diagrams. T he variation of rotational shear as a function of effective temperature in restricted ranges of rotation period is determined. The shear increases to a maximum in F stars, but decreases somewhat in the A stars. Theoretical models reproduce the temperature variation quite well. The dependence of rotation shear on rotation rate in restricted temperature ranges is also determined. The dependence of the shear on the rotation rate is weak in K and G stars, increases rapidly for F stars and is strongest in A stars. For stars earlier than type K, a discrepancy exists between the predicted and observed variation of shear with rotation rate. There is a strong increase in the fraction of stars with zero frequency spread with increasing effective temperature. The time-frequency diagrams for A stars are no different from those in cool stars, further supporting the presence of spots in stars with radiative envelopes.
We continue our studies on stellar latitudinal differential rotation. The presented work is a sequel of the work of Reiners et al. who studied the spectral line broadening profile of hundreds of stars of spectral types A through G at high rotational speed (vsini > 12 km/s). While most stars were found to be rigid rotators, only a few tens show the signatures of differential rotation. The present work comprises the rotational study of some 180 additional stars. The overall broadening profile is derived according to Reiners et al. from hundreds of spectral lines by least-squares deconvolution, reducing spectral noise to a minimum. Projected rotational velocities vsini are measured for about 120 of the sample stars. Differential rotation produces a cuspy line shape which is best measured in inverse wavelength space by the first two zeros of its Fourier transform. Rigid and differential rotation can be distinguished for more than 50 rapid rotators (vsini > 12 km/s) among the sample stars from the available spectra. Ten stars with significant differential rotation rates of 10-54 % are identified, which add to the few known rapid differential rotators. Differential rotation measurements of 6 % and less for four of our targets are probably spurious and below the detection limit. Including these objects, the line shapes of more than 40 stars are consistent with rigid rotation.
111 - Hao Tian , Chao Liu , Yougang Wang 2020
We use K-giant stars selected from the LAMOST DR5 to study the variation of the rotational velocity of the galactic halo at different space positions. Modelling the rotational velocity distribution with both the halo and disk components, we find that the rotational velocity of the halo population decreases almost linearly with increasing vertical distance to the galactic disk plane, $Z$, at fixed galactocentric radius, $R$. The samples are separated into two parts with $6<R<12$ kpc and $12<R<20$ kpc. We derive that the decreasing rates along $Z$ for the two subsamples are $-3.07pm0.63$ and $-1.89pm0.37$ km s$^{-1}$ kpc$^{-1}$, respectively. Compared with the TNG simulations, we suggest that this trend is probably caused by the interaction between the disk and halo. The results from the simulations show that only the oblate halo can provide a decreasing rotational velocity with an increasing $Z$. This indicates that the Galactic halo is oblate with galactocentric radius $R<20$ kpc. On the other hand, the flaring of the disk component (mainly the thick disk) is clearly traced by this study, with $R$ between 12 and 20 kpc, the disk can vertically extend to $6sim10$ kpc above the disk plane. What is more interesting is that, we find the Gaia-Enceladus-Sausage (GES) component has a significant contribution only in the halo with $R<12$ kpc, i.e. a fraction of 23$-$47%. While in the outer subsample, the contribution is too low to be well constrained.
We suggest a specific new class of low-frequency g-modes in superfluid neutron stars. We determine the Brunt-Vaisala frequency for these modes and demonstrate that they can be unstable with respect to convection. The criterion for the instability ons et (analogue of the well known Schwarzschild criterion) is derived. It is very sensitive to equation of state and a model of nucleon superfluidity. In particular, convection may occur for both positive and negative temperature gradients. Our results have interesting implications for neutron star cooling and seismology.
We gathered high resolution spectra for an ensemble of 55 bright active and inactive stars using the ARC 3.5 m Telescope Echelle Spectrograph at Apache Point Observatory ($Rapprox$31,500). We measured spectroscopic effective temperatures, surface gra vities and metallicities for most stars in the sample with SME and MOOG. Our stellar property results are consistent with the photometric effective temperatures from the Gaia DR2 pipeline. We also measured their chromospheric $S$ and $log R^prime_mathrm{HK}$ indices to classify the stars as active or inactive and study the connection between chromospheric activity and starspots. We then attempted to infer the starspot covering fractions on the active stars by modeling their spectra as a linear combination of hot and cool inactive stellar spectral templates. We find that it is critical to use precise colors of the stars to place stringent priors on the plausible spot covering fractions. The inferred spot covering fractions generally increase with the chromospheric activity indicator $log R^prime_mathrm{HK}$, though we are largely insensitive to spot coverages smaller than $f_S lesssim 20$%. We find a dearth of stars with small $log R^prime_mathrm{HK}$ and significant spot coverages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا