ترغب بنشر مسار تعليمي؟ اضغط هنا

Star-forming galaxies with hot dust emission in the Sloan Digital Sky Survey discovered by the Wide-field Infrared Survey Explorer (WISE)

104   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. I. Izotov




اسأل ChatGPT حول البحث

We present the results of a search for Sloan Digital Sky Survey (SDSS) emission-line galaxies with very red 3.4mum - 4.6mum (W1-W2) colours in the Wide-field Infrared Survey Explorer (WISE) Preliminary Release Source Catalogue (PRSC) aiming to find objects with hot dust emission. For this purpose we considered a sample of ~16000 galaxies with strong emission lines selected out of a total of ~900000 SDSS spectra and identified them with the PRSC sources. We find that ~5000 sources out of the ~16000 SDSS galaxies are present in the PRSC, including ~1000 galaxies with sufficiently strong [OIII]4363 emission lines to permit reliable determinations of the oxygen abundance. No correlation of W1-W2 with metallicity is found. On the other hand, there is clear evidence for a redder W1-W2 index in galaxies with higher Hbeta luminosity and higher Hbeta equivalent width, implying that strong UV radiation from young starbursts efficiently heats interstellar dust to high temperatures. However, galaxies with very red colours W1-W2>2 mag, similar to that in the local extreme star-forming galaxy SBS 0335-052E, are very rare. In addition to three previously known sources, which are not present in our sample, we found only four such galaxies.



قيم البحث

اقرأ أيضاً

We present ground-based spectroscopic verification of six Y dwarfs (see Cushing et al), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spe ctral types greater than or equal to T6, six of which have been announced earlier in Mainzer et al and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. After deriving an absolute WISE 4.6 um (W2) magnitude vs. spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8 (+1.3,-0.6) pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another ten objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of roughly 4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from Spitzer/IRAC allow us to calculate proper motions and tangential velocities for roughly one half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss constraints on both the functional form of the mass function and the low-mass limit of star formation.
In our effort to complete the census of low-mass stars and brown dwarfs in the immediate Solar Neighborhood, we present spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by t he Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on twelve candidates selected using WISE data but previously published elsewhere. The new discoveries include fifteen M dwarfs, seventeen L dwarfs, five T dwarfs, and five objects of other type. Among these discoveries is a newly identified unusually red L dwarf (WISE J223527.07+451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L+T binary systems, and a T9 dwarf (WISE J124309.61+844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012) may be a low-gravity object and hence young and potentially low mass (< 25 MJup).
224 - Y. I. Izotov 2013
(abridged) We studied a large sample of ~14000 dwarf star-forming galaxies with strong emission lines selected from the Sloan Digital Sky Survey (SDSS) and distributed in the redshift range of z~0-0.6. We modelled spectral energy distributions (SED) of all galaxies which were based on the SDSS spectra in the visible range of 0.38-0.92 micron and included both the stellar and ionised gas emission. These SEDs were extrapolated to the UV and mid-infrared ranges to cover the wavelength range of 0.1-22 micron. The SDSS spectroscopic data were supplemented by photometric data from the GALEX, SDSS, 2MASS, WISE, IRAS, and NVSS all-sky surveys. We derived global characteristics of the galaxies, such as their element abundances, luminosities, and stellar masses. The luminosities and stellar masses range within the sample over ~5 orders of magnitude, thereby linking low-mass and low-luminosity blue compact dwarf (BCD) galaxies to luminous galaxies, which are similar to high-redshift Lyman-break galaxies (LBGs). The luminosity L(Hbeta) of the Hbeta emission line, a characteristic of the youngest stellar population with an age of a few Myr, is correlated with luminosities in other wavelength ranges. This implies that the most recent burst of star formation makes a significant contribution to the emission in the visible range and dominates in other wavelength ranges. We found 20 galaxies with very red WISE mid-infrared m(3.4micron)-m(4.6micron) colour (>2 mag), which suggests the important contribution of the hot (with a temperature of several hundred degree) dust emission in these galaxies. Our analysis of the balance between the luminosity in the WISE bands that covered a wavelength range of 3.4-22 micron and the luminosity of the emission absorbed at shorter wavelengths showed that the luminosity of the hot dust emission is increased with increasing L(Hbeta) and EW(Hbeta).
135 - N. V. Asari 2007
We study the evolution of 82302 star-forming (SF) galaxies from the SDSS. Our main goals are to explore new ways of handling star formation histories (SFH) obtained with our publicly available spectral synthesis code STARLIGHT, and apply them to inve stigate how SFHs vary as a function of nebular metallicity (Zneb). Our main results are: (1) A conventional correlation analysis shows how global properties such as luminosity, mass, dust content, mean stellar metallicity and mean stellar age relate to Zneb. (2) We present a simple formalism which compresses the results of the synthesis into time-dependent star formation rates (SFR) and mass assembly histories. (3) The current SFR derived from the population synthesis and that from H-alpha are shown to agree within a factor of two. Thus we now have a way to estimate SFR in AGN hosts, where the H-alpha method cannot be applied. (4) Fully time-dependent SFHs are derived for all galaxies and averaged over six Zneb bins spanning the entire SF wing in the [OIII]/H-beta X [NII]/H-alpha diagram. (5) We find that SFHs vary systematically along the SF sequence, such that low-Zneb systems evolve slower and are currently forming stars at a higher relative rate. (6) At any given time, the distribution of specific SFRs for galaxies within a Zneb-bin is broad and roughly log-normal. (7) The same results are found grouping galaxies in stellar mass (M*) or surface mass density (S*) bins. (8) The overall pattern of SFHs as a function of Zneb, M* or S* is robust against changes in selection criteria, choice of evolutionary synthesis models for the spectral fits, and differential extinction effects. (Abridged)
We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Al though the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies ($sim$11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly-inclined blue cloud galaxies or quiescent red galaxies with poorly-constrained star formation. The proportion of Red Misfits is nearly independent of environment and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an AGN. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally-driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals and green valley galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا