ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar population models in the UV: I. Characterisation of the New Generation Stellar Library

153   0   0.0 ( 0 )
 نشر من قبل Mina Koleva
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral predictions of stellar population models are not as accurate in the ultra-violet (UV) as in the optical wavelength domain. One of the reasons is the lack of high-quality stellar libraries. The New Generation Stellar Library (NGSL), recently released,represents a significant step towards the improvement of this situation. To prepare NGSL for population synthesis, we determined the atmospheric parameters of its stars, we assessed the precision of the wavelength calibration and characterised its intrinsic resolution. We also measured the Galactic extinction for each of the NGSL stars. For our analyses we used ULySS, a full spectrum fitting package, fitting the NGSL spectra against the MILES interpolator. We find that the wavelength calibration is precise up to 0.1 px, after correcting a systematic effect in the optical range. The spectral resolution varies from 3{AA} in the UV to 10{AA} in the near-infrared (NIR), corresponding to a roughly constant reciprocal resolution R ~ 1000 and an instrumental velocity dispersion $sigma_{ins}$ ~ 130 km/s. We derived the atmospheric parameters homogeneously. The precision for the FGK stars is 42K, 0.24 and 0.09 dex for Teff, logg and [Fe/H], respectively. The corresponding mean errors are 29K, 0.50 and 0.48 dex for theMstars, and for the OBA stars they are 4.5 percent, 0.44 and 0.18 dex. The comparison with the literature shows that our results are not biased.



قيم البحث

اقرأ أيضاً

(Aims) We present a number of improvements to the MILES library and stellar population models. We correct some small errors in the radial velocities of the stars, measure the spectral resolution of the library and models more accurately, and give a b etter absolute flux calibration of the models. (Methods) We use cross-correlation techniques to correct the radial velocities of the offset stars and the penalised pixel-fitting method, together with different sets of stellar templates, to re-assess the spectral resolution of the MILES stellar library and models. We have also re-calibrated the zero-point flux level of the models using a new calibration scheme. (Results) The end result is an even more homogeneously calibrated stellar library than the originally released one, with a measured spectral resolution of ~2.5AA, almost constant with wavelength, for both the MILES stellar library and models. Furthermore, the new absolute flux calibration for the spectra excellently agrees with predictions based on independent photometric libraries. (Conclusions) This improved version of the MILES library and models (version 9.1) is available at the projects website (http://miles.iac.es).
64 - C. Maraston , L. Hill , D. Thomas 2019
We use the first release of the SDSS/MaStar stellar library comprising ~9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36-1.03 micron and share the same spectral res olution (R~1800) and flux calibration as the SDSS-IV/MaNGA galaxy data. The parameter space covered by the stellar spectra collected thus far allows the calculation of models with ages and chemical composition in the range t>200 Myr, -2 <=[Z/H]<= + 0.35, which will be extended as MaStar proceeds. Notably, the models include spectra for dwarf Main Sequence stars close to the core H-burning limit, as well as spectra for cold, metal-rich giants. Both stellar types are crucial for modelling lambda>0.7 micron absorption spectra. Moreover, a better parameter coverage at low metallicity allows the calculation of models as young as 500 Myr and the full account of the Blue Horizontal Branch phase of old populations. We present models adopting two independent sets of stellar parameters (T_eff, logg, [Z/H]). In a novel approach, their reliability is tested on the fly using the stellar population models themselves. We perform tests with Milky Way and Magellanic Clouds globular clusters, finding that the new models recover their ages and metallicities remarkably well, with systematics as low as a few per cent for homogeneous calibration sets. We also fit a MaNGA galaxy spectrum, finding residuals of the order of a few per cent comparable to the state-of-art models, but now over a wider wavelength range.
[Abridged]. We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the optical range at resolution 2.3A (FWHM). These SEDs constitute our base models, as they combine scaled-solar isochrones with MILES empirical stella r library, which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients, not just on the stellar spectra, but also on extensive photometric libraries. The unprecedented stellar parameter coverage of MILES allowed us to safely extend our optical SSP SED predictions from intermediate- to very-old age regimes, and the metallicity coverage of the SSPs from super-solar to [M/H]=-2.3. SSPs with such low metallicities are particularly useful for globular cluster studies. Observed spectra can be studied by means of full spectrum fitting or line-strengths. For the latter we propose a new Line Index System (LIS) to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provide more appropriate, uniform, spectral resolution. Apart from constant resolution as function of wavelength the system is also based on flux-calibrated spectra. Data can be analyzed at three different resolutions: 5A, 8.4A and 14A (FWHM), which are appropriate for studying globular cluster, low and intermediate-mass galaxies, and massive galaxies, respectively. Polynomials to transform current Lick/IDS line index measurements to the new system are provided. A web-page with a suite of on-line tools to facilitate the handling and transformation of the spectra is available at http://miles.iac.es.
104 - B. Rock , A. Vazdekis (1 2015
We present the first single-burst stellar population models in the infrared wavelength range between 2.5 and 5 {mu}m which are exclusively based on empirical stellar spectra. Our models take as input 180 spectra from the stellar IRTF (Infrared Telesc ope Facility) library. Our final single-burst stellar population models are calculated based on two different sets of isochrones and various types of initial mass functions of different slopes, ages larger than 1 Gyr and metallicities between [Fe/H] = -0.70 and 0.26. They are made available online to the scientific community on the MILES web page. We analyse the behaviour of the Spitzer [3.6]-[4.5] colour calculated from our single stellar population models and find only slight dependences on both metallicity and age. When comparing to the colours of observed early-type galaxies, we find a good agreement for older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours with respect to our models. This mismatch can be explained by a more extended star formation history of these galaxies which includes a metal-poor or/and young population. Moreover, the colours derived from our models agree very well with most other models available in this wavelength range. We confirm that the mass-to-light ratio determined in the Spitzer [3.6] {mu}m band changes much less as a function of both age and metallicity than in the optical bands.
MEGARA (Multi Espectr{o}grafo en GTC de Alta Resoluci{o}n para Astronom{i}a) is an optical (3650~--~9750AA), fibre-fed, medium-high spectral resolution (R = 6000, 12000, 20000) instrument for the GTC 10.4m telescope, commissioned in the summer of 201 7, and currently in operation. The scientific exploitation of MEGARA demands a stellar-spectra library to interpret galaxy data and to estimate the contribution of the stellar populations. This paper introduces the MEGARA-GTC spectral library, detailing the rationale behind the catalogue building. We present the spectra of 97 stars (21 individual stars and 56 members of the globular cluster M15, being both sub-samples taken during the commissioning runs; and 20 stars from our on-going GTC Open-Time program). The spectra have R~=~20000 in the HR-R and HR-I setups, centred at 6563 and 8633~AA respectively. We describe the procedures to reduce and analyse the data. Then, we determine the best-fitting theoretical models to each spectrum through a $chi^{2}$ minimisation technique to derive the stellar physical parameters and discuss the results. We have also measured some absorption lines and indices. Finally, this article introduces our project to complete the library and the database to make the spectra available to the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا