ﻻ يوجد ملخص باللغة العربية
We propose the notion of quasi-abelian third cohomology of crossed modules, generalizing Eilenberg and MacLanes abelian cohomology and Ospels quasi-abelian cohomology, and classify crossed pointed categories in terms of it. We apply the process of equivariantization to the latter to obtain braided fusion categories which may be viewed as generalizations of the categories of modules over twisted Drinfeld doubles of finite groups. As a consequence, we obtain a description of all braided group-theoretical categories. A criterion for these categories to be modular is given. We also describe the quasi-triangular quasi-Hopf algebras underlying these categories.
We classify finite pointed braided tensor categories admitting a fiber functor in terms of bilinear forms on symmetric Yetter-Drinfeld modules over abelian groups. We describe the groupoid formed by braided equivalences of such categories in terms of
We analyze the action of the Brauer-Picard group of a pointed fusion category on the set of Lagrangian subcategories of its center. Using this action we compute the Brauer-Picard groups of pointed fusion categories associated to several classical fin
We establish rank-finiteness for the class of $G$-crossed braided fusion categories, generalizing the recent result for modular categories and including the important case of braided fusion categories. This necessitates a study of slightly degenerate
We develop a method for generating the complete set of basic data under the torsorial actions of $H^2_{[rho]}(G,mathcal{A})$ and $H^3(G,U(1))$ on a $G$-crossed braided tensor category $mathcal{C}_G^times$, where $mathcal{A}$ is the set of invertible
We study actions of pointed Hopf algebras on matrix algebras. Our approach is based on known facts about group gradings of matrix algebras.