ﻻ يوجد ملخص باللغة العربية
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model, with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed exactly in the two limiting cases of vanishing magnetic field and vanishing temperature. For all other situations, numerical results provide evidence of a finite mutual information at all temperatures except at criticality. There, it diverges as the logarithm of the system size, with a prefactor that can take only two values, depending on whether the critical temperature vanishes or not. Our work provides a simple example in which the mutual information appears as a powerful tool to detect finite-temperature phase transitions, contrary to entanglement measures such as the concurrence.
Entanglement entropy in free scalar field theory at its ground state is dominated by an area law term. However, when mixed states are considered this property ceases to exist. We show that in such cases the mutual information obeys an area law. The p
Atomic many-body phase transitions and quantum criticality have recently attracted much attention in non-standard optical lattices. Here we perform an experimental study of finite-temperature superfluid transition of bosonic atoms confined in a three
We study the temporal evolution of the mutual information (MI) in a one-dimensional Kitaev chain, coupled to a fermionic Markovian bath, subsequent to a global quench of the chemical potential. In the unitary case, the MI (or equivalently the biparti
We study the entanglement entropy and the mutual information in coupled harmonic systems at finite temperature. Interestingly, we find that the mutual information does not vanish at infinite temperature, but it rather reaches a specific finite value,
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of EE