ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence in a transmon qubit with epitaxial tunnel junctions

40   0   0.0 ( 0 )
 نشر من قبل Martin Weides
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubits inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

قيم البحث

اقرأ أيضاً

We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical current as a function of thickness of the ferromagnetic layer and use this model to fit recent experimental data. We also calculate quantitatively the density of states (DOS) in this type of junctions and compare DOS oscillations with those of the critical current.
The dependence of the critical current density j_c on the ferromagnetic interlayer thickness d_F was determined for Nb/Al_2O_3/Cu/Ni/Nb Josephson tunnel junctions with ferromagnetic Ni interlayer from very thin film thicknesses (sim 1 nm) upwards and classified into F-layer thickness regimes showing a dead magnetic layer, exchange, exchange + anisotropy and total suppression of j_c. The Josephson coupling changes from 0 to pi as function of d_F, and -very close to the crossover thickness- as function of temperature. The strong suppression of the supercurrent in comparison to non-magnetic Nb/Al_2O_3/Cu/Nb junctions indicated that the insertion of a F-layer leads to additional interface scattering. The transport inside the dead magnetic layer was in dirty limit. For the magnetically active regime fitting with both the clean and the dirty limit theory were carried out, indicating dirty limit condition, too. The results were discussed in the framework of literature
63 - A. Dewes , F. R. Ong , V. Schmitt 2011
We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critic al currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.
We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an advantage of SIFS junctions for superconducting qubits applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا