ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge Fixing of Modified Cubic Open Superstring Field Theory

135   0   0.0 ( 0 )
 نشر من قبل Maiko Kohriki
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The gauge-fixing problem of modified cubic open superstring field theory is discussed in detail both for the Ramond and Neveu-Schwarz sectors in the Batalin-Vilkovisky (BV) framework. We prove for the first time that the same form of action as the classical gauge-invariant one with the ghost-number constraint on the string field relaxed gives the master action satisfying the BV master equation. This is achieved by identifying independent component fields based on the analysis of the kernel structure of the inverse picture changing operator. The explicit gauge-fixing conditions for the component fields are discussed. In a kind of $b_0=0$ gauge, we explicitly obtain the NS propagator which has poles at the zeros of the Virasoro operator $L_0$.



قيم البحث

اقرأ أيضاً

The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations <V_2|V_1> and <V_3|V_1> in the NS fermionic strin g field theory in the kappa and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.
We propose a dimensional regularization scheme to deal with the divergences caused by colliding supercurrents inserted at the interaction points, in the light-cone gauge NSR superstring field theory. We formulate the theory in $d$ dimensions and defi ne the amplitudes as analytic functions of $d$. With an appropriately chosen three-string interaction term and large negative $d$, the tree level amplitudes for the (NS,NS) closed strings can be recast into a BRST invariant form, using the superconformal field theory proposed in Ref.[arXiv:0911.3704]. We show that in the limit $d to 10$ they coincide with the results of the first quantized theory. Therefore we obtain the desired results without adding any contact interaction terms to the action.
We discuss the amplitudes describing N-gluon scattering in type I superstring theory, on a disk world-sheet. After reviewing the general structure of amplitudes and the complications created by the presence of a large number of vertices at the bounda ry, we focus on the most promising case of maximally helicity violating (MHV) configurations because in this case, the zero Regge slope limit (alpha -> 0) is particularly simple. We obtain the full-fledged MHV disk amplitudes for N=4,5 and N=6 gluons, expressed in terms of one, two and six functions of kinematic invariants, respectively. These functions represent certain boundary integrals - generalized Euler integrals - which for N>= 6 correspond to multiple hypergeometric series (generalized Kampe de Feriet functions). Their alpha-expansions lead to Euler-Zagier sums. For arbitrary N, we show that the leading string corrections to the Yang-Mills amplitude, of order O(alpha^2), originate from the well-known alpha^2 Tr F^4 effective interactions of four gauge field strength tensors. By using iteration based on the soft gluon limit, we derive a simple formula valid to that order for arbitrary N. We argue that such a procedure can be extended to all orders in alpha. If nature gracefully picked a sufficiently low string mass scale, our results would be important for studying string effects in multi-jet production at the Large Hadron Collider (LHC).
We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the picture s different from the standard choice, namely (-1,-1) picture in the type II case and -1 picture in the heterotic case. We also show that the contact term divergences can be regularized in the same way as in the amplitudes for the even structures and we get the amplitudes which coincide with those obtained from the first-quantized approach.
We consider the dimensional regularization of the light-cone gauge type II superstring field theories in the NSR formalism. In the previous work, we have calculated the tree-level amplitudes with external lines in the (NS,NS) sector using the regular ization and shown that the desired results are obtained without introducing contact term interactions. In this work, we study the tree-level amplitudes with external lines in the Ramond sector. In order to deal with them, we propose a worldsheet theory to be used instead of that for the naive dimensional regularization. With the worldsheet theory, we regularize and define the tree-level amplitudes by analytic continuation. We show that the results coincide with those of the first quantized formulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا