ﻻ يوجد ملخص باللغة العربية
We present measurements of carbon, oxygen, silicon, and iron in quasar absorption systems existing when the universe was roughly one billion years old. We measure column densities in nine low-ionization systems at 4.7 < z < 6.3 using Keck, Magellan, and VLT optical and near-infrared spectra with moderate to high resolution. The column density ratios among C II, O I, Si II, and Fe II are nearly identical to sub-DLAs and metal-poor ([M/H] < -1) DLAs at lower redshifts, with no significant evolution over 2 < z < 6. The estimated intrinsic scatter in the ratio of any two elements is also small, with a typical r.m.s. deviation of <0.1 dex. These facts suggest that dust depletion and ionization effects are minimal in our z > 4.7 systems, as in the lower-redshift DLAs, and that the column density ratios are close to the intrinsic relative element abundances. The abundances in our z > 4.7 systems are therefore likely to represent the typical integrated yields from stellar populations within the first gigayear of cosmic history. Due to the time limit imposed by the age of the universe at these redshifts, our measurements thus place direct constraints on the metal production of massive stars, including iron yields of prompt supernovae. The lack of redshift evolution further suggests that the metal inventories of most metal-poor absorption systems at z > 2 are also dominated by massive stars, with minimal contributions from delayed Type Ia supernovae or AGB winds. The relative abundances in our systems broadly agree with those in very metal-poor, non-carbon-enhanced Galactic halo stars. This is consistent with the picture in which present-day metal-poor stars were potentially formed as early as one billion years after the Big Bang.
Deep observations are revealing a growing number of young galaxies in the first billion year of cosmic time. Compared to typical galaxies at later times, they show more extreme emission-line properties, higher star formation rates, lower masses, and
We report two secure ($z=3.775, 4.012$) and one tentative ($zapprox3.767$) spectroscopic confirmations of massive and quiescent galaxies through $K$-band observations with Keck/MOSFIRE and VLT/X-Shooter. The stellar continuum emission, the absence of
Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a chan
How and when did galaxies form and assemble their stars and stellar mass? The answer to these questions, so crucial to astrophysics and cosmology, requires the full reconstruction of the so called cosmic star formation rate density (SFRD), i.e. the e
Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation, but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the a