ﻻ يوجد ملخص باللغة العربية
The paper deals with the one possible mechanism of the pulsar radio emission, i.e., with the collective curvature radiation of the relativistic particle stream moving along the curved magnetospheric magnetic field lines. It is shown that the electromagnetic wave containing one cylindrical harmonic exp{is{phi}} can not be radiated by the curvature radiation mechanism, that corresponds to radiation of a charged particle moving along curved magnetic field lines. The point is that the particle in vacuum radiates the triplex of harmonics (s, s pm 1), so for the collective curvature radiation the wave polarization is very important and cannot be fixed a priori. For this reason the polarization of real unstable waves must be determined directly from the solution of wave equations for the media. Its electromagnetic properties should be described by the dielectric permittivity tensor ^{epsilon}({omega},k,r), that contains the information on the reaction on all possible types of radiation.
The phenomenon of subpulse drifting offers unique insights into the emission geometry of pulsars, and is commonly interpreted in terms of a rotating carousel of spark events near the stellar surface. We develop a detailed geometric model for the emis
When treating the absorption of light, one focuses on the absorption coefficient, related to the probability of photons to survive while traversing a layer of material. From the point of view of particles doing the absorption, however, the elementary
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a ~Jy flux at ~1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism.
We consider the fundamental problem of charged particles moving along and around a curved magnetic field line, revising the synchro-curvature radiation formulae introduced by Cheng and Zhang (1996). We provide more compact expressions to evaluate the
For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einsteins curvature scalar. The coupling strength is determined