ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic approximation for a two-level atom in a light beam

148   0   0.0 ( 0 )
 نشر من قبل Francis Nier
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Amandine Aftalion




اسأل ChatGPT حول البحث

Several misprints and small mistakes were in the initial version. They have been corrected. Following the recent experimental realization of synthetic gauge magnetic forces, Jean Dalibard adressed the question whether the adiabatic ansatz could be math- ematically justified for a model of an atom in 2 internal states, shone by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the in- formation about the presence of vortices. Surprisingly the main difficulties do not come from the nonlinear part but from the linear Hamiltonian. More precisely, the analysis of the nonlinear minimization problem and its asymptotic reduction to simpler ones, relies on an accurate partition of low and high frequencies (or mo- menta). This requires to reconsider carefully previous mathematical works about the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis provides a good insight about the validity of the asymptotic picture, with respect to the size of the many parameters initially put in the complete model.


قيم البحث

اقرأ أيضاً

109 - A. D. Boozer 2008
We present a general formalism for describing stimulated Raman adiabatic passage in a multi-level atom. The atom is assumed to have two ground state manifolds a and b and an excited state manifold e, and the adiabatic passage is carried out by resona ntly driving the a-e and b-e transitions with time-dependent fields. Our formalism gives a complete description of the adiabatic passage process, and can be applied to systems with arbitrary numbers of degenerate states in each manifold and arbitrary couplings of the a-e and b-e transitions. We illustrate the formalism by applying it to both a simple toy model and to adiabatic passage in the Cesium atom.
We study the force of light on a two-level atom near an ultrathin optical fiber using the mode function method and the Green tensor technique. We show that the total force consists of the driving-field force, the spontaneous-emission recoil force, an d the fiber-induced van der Waals potential force. Due to the existence of a nonzero axial component of the field in a guided mode, the Rabi frequency and, hence, the magnitude of the force of the guided driving field may depend on the propagation direction. When the atomic dipole rotates in the meridional plane, the spontaneous-emission recoil force may arise as a result of the asymmetric spontaneous emission with respect to opposite propagation directions. The van der Waals potential for the atom in the ground state is off-resonant and opposite to the off-resonant part of the van der Waals potential for the atom in the excited state. Unlike the potential for the ground state, the potential for the excited state may oscillate depending on the distance from the atom to the fiber surface.
Quantum mechanical treatment of light inside dielectric media is important to understand the behavior of an optical system. In this paper, a two-level atom embedded in a rectangular waveguide surrounded by a perfect electric conductor is considered. Spontaneous emission, propagation, and detection of a photon are described by the second quantization formalism. The quantized modes for light are divided into two types: photonic propagating modes and localized modes with exponential decay along the direction of waveguide. Though spontaneous emission depends on all possible modes including the localized modes, detection far from the source only depends on the propagating modes. This discrepancy of dynamical behaviors gives two different decay rates along space and time in the correlation function of the photon detection.
337 - C. Lazarou , B.M. Garraway 2008
We analyse the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time dependent couplings which represent the spatial dependen ce of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behaviour which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and C-NOT gates with atomic qubits.
114 - C. Lazarou , B. M. Garraway 2008
We study the adiabatic limit for the sequential passage of atoms through a high-Q cavity, in the presence of frequency chirps. Despite the fact that the adiabatic approximation might be expected to fail, we were able to show that for proper choice of Stark-pulses this is not the case. Instead, a connection to the resonant limit is established, where the robust creation of entanglement is demonstrated. Recent developments in the fabrication of high-Q cavities allow fidelities for a maximally entangled state up to 97%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا