ﻻ يوجد ملخص باللغة العربية
We derive the dynamical structure factor for an inhomogeneous Tomonaga-Luttinger liquid as can be formed in a confined strongly interacting one-dimensional gas. In view of current experimental progress in the field, we provide a simple analytic expression for the light-scattering cross section, requiring only the knowledge of the density dependence of the ground-state energy, as they can be extracted e.g. from exact or Quantum Monte Carlo techniques, and a Thomas-Fermi description. We apply the result to the case of one-dimensional quantum bosonic gases with dipolar interaction in a harmonic trap, using an energy functional deduced from Quantum Monte Carlo computations. We find an universal scaling behavior peculiar of the Tomonaga-Luttinger liquid, a signature that can be eventually probed by Bragg spectroscopy in experimental realizations of such systems.
We develop a general framework to compute the scaling of entanglement entropy in inhomogeneous one-dimensional quantum systems belonging to the Luttinger liquid universality class. While much insight has been gained in homogeneous systems by making u
The light-cone spreading of entanglement and correlation is a fundamental and ubiquitous feature of homogeneous extended quantum systems. Here we point out that a class of inhomogenous Luttinger liquids (those with a uniform Luttinger parameter $K$)
The concept of Tomonaga--Luttinger liquids (TLL) on the basis of the free-boson models is ubiquitous in theoretical descriptions of low-energy properties in one-dimensional quantum systems. In this work, we develop a squeezed-field path-integral desc
We present two methods to determine whether the interactions in a Tomonaga-Luttinger liquid (TLL) state of a spin-$1/2$ Heisenberg antiferromagnetic ladder are attractive or repulsive. The first method combines two bulk measurements, of magnetization
We investigate charge fractionalizations in artificial Tomonaga-Luttinger liquids (TLLs) composed of two capacitively coupled quantum Hall edge channels (ECs) in graphene. The interaction strength of the artificial TLLs can be controlled through dist