ﻻ يوجد ملخص باللغة العربية
We present new UVES spectra of a sample of 15 cool unevolved stars with and without detected planetary companions. Together with previous determinations, we study Be depletion and possible differences in Be abundances between both groups of stars. We obtain a final sample of 89 and 40 stars with and without planets, respectively, which covers a wide range of effective temperatures, from 4700 K to 6400 K, and includes several cool dwarf stars for the first time. We determine Be abundances for these stars and find that for most of them (the coolest ones) the BeII resonance lines are often undetectable, implying significant Be depletion. While for hot stars Be abundances are aproximately constant, with a slight fall as Teff decreases and the Li-Be gap around 6300 K, we find a steep drop of Be content as Teff decreases for Teff < 5500 K, confirming the results of previous papers. Therefore, for these stars there is an unknown mechanism destroying Be that is not reflected in current models of Be depletion. Moreover, this strong Be depletion in cool objects takes place for all the stars regardless of the presence of planets, thus, the effect of extra Li depletion in solar-type stars with planets when compared with stars without detected planets does not seem to be present for Be, although the number of stars at those temperatures is still small to reach a final conclusion.
We present new UVES spectra of a sample of 14 mostly cool unevolved stars with planetary companions with the aim of studying possible differences in Be abundance with respect to stars without detected planets. We determine Be abundances for these sta
The large majority of stars in the Milky Way are late-type dwarfs, and the frequency of low-mass exoplanets in orbits around these late-type dwarfs appears to be high. In order to characterize the radiation environments and habitable zones of the coo
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the
In this study, abundances of the neutron-capture elements Rb, Sr, and Zr are derived, for the first time, in a sample of nearby M dwarfs. We focus on stars in the metallicity range -0.5<[Fe/H]<+0.3, an interval poorly explored for Rb abundances in pr
We study the effects of feebly or non-annihilating weakly interacting Dark Matter (DM) particles on stars that live in DM environments denser than that of our Sun. We find that the energy transport mechanism induced by DM particles can produce unusua