ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of the non-detection of X-ray emission from HD 149427

79   0   0.0 ( 0 )
 نشر من قبل Matthias Stute
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 149427 is a very enigmatic object. It has been classified either as a planetary nebula or as a D-type symbiotic star. Its distance is also highly uncertain. Furthermore, HD 149427 is a potential jet source. We report the non-detection of X-ray emission from HD 149427 and explore the implications to its nature. We observed the object with XMM-Newton with an effective exposure time of 33.5 ks. The upper limit for the flux of the X-ray emission in the soft band (<2 keV) is 10^-15 erg/s/cm^2, while in the hard band (>2 keV) it is about 10^-14 erg/s/cm^2. We discuss the implication of our results in light of the possible natures of HD 149427 -- being a planetary nebula or a symbiotic star, close or very distant. The derived upper limits on the mass accretion rate of the white dwarf are untypical for symbiotic stars and may favor the picture of HD 149427 being a young PN. HD 149427 might be a symbiotic star in hibernation -- if a symbiotic star at all. We estimate the possible mass-loss rate and kinetic luminosity of the jet and find no contradiction with our upper limit of soft X-ray emission. Therefore the jet may be still present but it was too faint to be detected via soft X-ray emission.



قيم البحث

اقرأ أيضاً

We report the discovery of a hard-thermal (T ~ 130 MK) and variable X-ray emission from the Be star HD 157832, a new member of the puzzling class of gamma-Cas-like Be/X-ray systems. Recent optical spectroscopy reveals the presence of a large/dense ci rcumstellar disc seen at intermediate/high inclination. With a B1.5V spectral type, HD 157832 is the coolest gamma-Cas analog known. In addition, its non detection in the ROSAT all-sky survey shows that its average soft X-ray luminosity varied by a factor larger than ~ 3 over a time interval of 14 yr. These two remarkable features, ``low effective temperature and likely high X-ray variability turn HD 157832 into a promising object for understanding the origin of the unusually high temperature X-ray emission in these systems.
366 - B. Stelzer 2009
Accretion shocks have been recognized as important X-ray emission mechanism for pre-main sequence stars. Yet the X-ray properties of FUor outbursts, events that are caused by violent accretion, have been given little attention. We have observed the F Uor object Z CMa during optical outburst and quiescence with Chandra. No significant changes in X-ray brightness and spectral shape are found, suggesting that the X-ray emission is of coronal nature. Due to the binary nature of Z CMa the origin of the X-ray source is ambiguous. However, the moderate hydrogen column density derived from our data makes it unlikely that the embedded primary star is the X-ray source. The secondary star, which is the FUor object, is thus responsible for both the X-ray emission and the presently ongoing accretion outburst, which seem however to be unrelated phenomena. The secondary is also known to drive a large outflow and jet, that we detect here for the first time in X-rays. The distance of the X-ray emitting outflow source to the central star is higher than in jets of low-mass stars.
164 - Jie-Ying Liu , Jirong Mao 2020
The detection of the gamma-ray burst (GRB) X-ray emission line is important for studying the GRB physics and constraining the GRB redshift. Since the line-like feature in the GRB X-ray spectrum was first reported in 1999, several works on line search ing have been published over the past two decades. Even though some observations on the X-ray line-like feature were performed, the significance remains controversial to date. In this paper, we utilize the down-Comptonization mechanism and present the time evolution of the Fe K$alpha$ line emitted near the GRB central engine. The line intensity decreases with the evolution time, and the time evolution depends on the the electron density and the electron temperature. In addition, the initial line with a larger broadening decreases less over time. For instance, when the emission line penetrates material with the an electron density above $10^{12}$ cm$^{-3}$ at 1 keV, it generally becomes insignificant enough after 100 s for it not to be detected. The line-like profile deviates from the Gaussian form, and it finally changes to be similar to a blackbody shape at the time of the thermal equilibrium between the line photons and the surrounding material.
We report new Chandra hard X-ray ($>2rm~keV$) and JVLA C-band observations of the nuclear superbubble of NGC 3079, an analog of the Fermi bubble in our Milky Way. We detect extended hard X-ray emission on the SW side of the galactic nucleus with cohe rent multi-wavelength features in radio, H$alpha$, and soft X-ray. The hard X-ray feature has a cone shape with possibly a weak cap, forming a bubble-like structure with a diameter of $sim1.1rm~kpc$. A similar extended feature, however, is not detected on the NE side, which is brighter in all other wavelengths such as radio, H$alpha$, and soft X-ray. Scattered photons from the nuclear region or other nearby point-like X-ray bright sources, inverse Compton emission from cosmic ray electrons via interaction with the cosmic microwave background, or any individually faint stellar X-ray source populations, cannot explain the extended hard X-ray emission on the SW side and the strongly NE/SW asymmetry. A synchrotron emission model, plus a thermal component accounting for the excess at $sim1rm~keV$, can well characterize the broadband radio/hard X-ray spectra. The broadband synchrotron spectra do not show any significant cutoff, and even possibly slightly flatten at higher energy. This rules out a loss-limited scenario in the acceleration of the cosmic ray electrons in or around this superbubble. As the first detection of kpc-scale extended hard X-ray emission associated with a galactic nuclear superbubble, the spatial and spectral properties of the multi-wavelength emissions indicate that the cosmic ray leptons responsible for the broad-band synchrotron emission from the SW bubble must be accelerated in situ, instead of transported from the nuclear region of the galaxy.
Using Chandra we have obtained imaging X-ray spectroscopy of the 10 to 16 Myr old F-star binary HD 113766. We individually resolve the binary components for the first time in the X-ray and find a total 0.3 to 2.0 keV luminosity of 2.2e29 erg/sec, con sistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only 10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or sub-stellar member of HD113766 with Lx > 6e25 erg s-1 within 2 arcmin of the binary pair. The ratio of the two stars Xray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. (2012). The emission is soft for both stars, kTApec = 0.30 to 0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks which we rule out. A possible 2.8 +/- 0.15 (2{sigma}) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to Lx = 2e29 erg s-1 argue for a 1 mm dust particle lifetime around HD 113766B of only 90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas dust around HD 113766A can survive for > 1.5e6 yrs. At 1e28 to 1e29 erg s-1 luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا