ﻻ يوجد ملخص باللغة العربية
DGLAP evolution equations are modified in order to use all the quark families in the full scale range, satisfying kinematical constraints and sumrules, thus having complete continuity for the pdfs and observables. Some consequences of this new approach are shown.
We have studied the effects of nonlinear scale evolution of the parton distribution functions to charm production in $pp$ collisions at center-of-mass energies of 5.5, 8.8 and 14 TeV. We find that the differential charm cross section can be enhanced
We have studied how parton distributions based on the inclusion of nonlinear scale evolution and constraints from HERA data affect charm production in $pp$ collisions at center-of-mass energies of 5.5, 8.8 and 14 TeV. We find that, while the resultin
The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By
The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.
We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely