ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization Suppression of Diatomic Molecules in Intense Midinfrared Laser Field

178   0   0.0 ( 0 )
 نشر من قبل Jing Chen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diatomic molecules (e.g., O$_2$) in intense laser field exhibit a peculiar suppressed ionization behavior compared to their companion atoms. Several physical models have been proposed to account for this suppression while no consensus has been achieved. In this letter, we aim to clarify the underlying mechanisms behind this molecular ionization suppression. Experimental data recorded at midinfrared laser wavelength and its comparison with that at near-infrared wavelength revealed a peculiar wavelength and intensity dependence of the suppressed ionization of O$_2$ with respect to its companion atom of Xe, while N$_2$ behaves like a structureless atom. It is found that the S-matrix theory calculation can reproduce well the experimental observations and unambiguously identifies the significant role of two-center interference effect in the ionization suppression of O$_2$.



قيم البحث

اقرأ أيضاً

We present an implementation of a time-dependent multiconfiguration self-consistent-field (TD-MCSCF) method [R. Anzaki et al., Phys. Chem. Chem. Phys. 19, 22008 (2017)] with the full configuration interaction expansion for coupled electron-nuclear dy namics in diatomic molecules subject to a strong laser field. In this method, the total wave function is expressed as a superposition of different configurations constructed from time-dependent electronic Slater determinants and time-dependent orthonormal nuclear basis functions. The primitive basis functions of nuclei and electrons are strictly independent of each other without invoking the Born-Oppenheimer approximation. Our implementation treats the electronic motion in its full dimensionality on curvilinear coordinates, while the nuclear wave function is propagated on a one-dimensional stretching coordinate with rotational nuclear motion neglected. We apply the present implementation to high-harmonic generation and dissociative ionization of a hydrogen molecule and discuss the role of electron-nuclear correlation.
Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity- dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.
The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linear polarized laser fields is derived. It is shown that in the low-frequency limit the ionization rate is proportional to the laser frequency, if a Coulombic long-range interaction is present. An expression for the corresponding proportionality coefficient is given. Since neither the saddle-point approximation nor the one of a small kinetic momentum is used in the derivation, the obtained expression represents the exact asymptotic limit. This result is used to propose a Coulomb correction factor. Finally, the applicability of the found asymptotic expression for non-vanishing laser frequencies is investigated.
We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer gas beam of YO. We generate a measurable flux of YO below 10~m/s, directly loadable into a three-dimensional magneto-optical trap. This technique opens the door for laser cooling of molecules with more complex structure.
Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroe dinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا