ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas modelling in the disc of HD 163296

76   0   0.0 ( 0 )
 نشر من قبل Ian Tilling
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of ~ 4 Myr, with evidence of a circumstellar disc extending out to ~ 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [OI]63mic line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the 12CO 3-2, 2-1 and 13CO J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry.

قيم البحث

اقرأ أيضاً

77 - P.N. Diep , D.T. Hoai , N.B. Ngoc 2019
HD 163296 is one of the few protoplanetary discs displaying rings in the dust component. The present work uses ALMA observations of the 0.9 mm continuum emission having significantly better spatial resolution (~8 au) than previously available, provid ing new insight on the morphology of the dust disc and its double ring structure. The disc is shown to be thin and its position angle and inclination with respect to the sky plane are accurately measured as are the locations and shapes that characterize the observed ring/gap structure. Significant modulation of the intensity of the outer ring emission have been revealed and discussed. In addition, earlier ALMA observations of the emission of three molecular lines, CO(2-1), C18O(2-1), and DCO+(3-2), having a resolution of ~70 au, are used to demonstrate the Keplerian motion of the gas, found consistent with a central mass of 2.3 solar masses. An upper limit of ~9% of the rotation velocity is placed on the in-fall velocity. The beam size is shown to give the dominant contribution to the line widths, accounting for both their absolute values and their dependence on the distance to the central star.
68 - G. Meeus , C. Pinte , P. Woitke 2010
In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the Open Time Key Project GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 micron, [CII] 157.7 micron, CO 72.8 and 90.2 micron, and o-H2O 78.7 and 179.5 micron. We only detect the [OI] 63.2 micron line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and 12/13CO data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDiMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 +/- 2.0 times 10^(-3) Msun is still present in this disc, in agreement with earlier CO observations.
The condensation fronts (snow lines) of H2O, CO and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substanti ally, based solely on CO emission profiles is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J=3-2 and DCO+ J=4-3 emission lines toward the disk around the Herbig Ae star HD~163296 at ~0.5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincides with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 vs. 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.
Jets and outflows are thought to play important roles in regulating star formation and disk evolution. HD 163296 is a well-studied Herbig Ae star that hosts proto-planet candidates, a protoplanetary disk, a protostellar jet, and a molecular outflow, which makes it an excellent laboratory for studying jets. We aim to characterize the jet at the inner regions and check if there are large differences with the features at large separations. A secondary objective is to demonstrate the performance of Multi Unit Spectroscopic Explorer (MUSE) in high-contrast imaging of extended line emission. MUSE in the narrow field mode (NFM) can provide observations at optical wavelengths with high spatial ($sim$75 mas) and medium spectral ($Rsim$2500) resolution. With the high-resolution spectral differential imaging (HRSDI) technique, we can characterize the kinematic structures and physical conditions of jets down to 100 mas. We detect multiple atomic lines in two new knots, B3 and A4, at distances of <4 from the host star with MUSE. The derived $dot{M}_{rm jet} / dot{M}_{rm acc}$ is about 0.08 and 0.06 for knots B3 and A4, respectively. The observed [Ca II]/[S II] ratios indicate that there is no sign of dust grains at distances of <4. Assuming the knot A4 traces the streamline, we set an upper limit of 2.2 au on the size of the launching region. Although MUSE has the ability to detect the velocity shifts caused by high- and low-velocity components, we found no significant evidence of velocity decrease transverse to the jet direction. Our work demonstrates the capability of using MUSE NFM observations for the detailed study of stellar jets in the optical down to 100~mas. The derived $dot{M}_{rm jet} / dot{M}_{rm acc}$, no dust grain, and jet radius at the star support the magneto-centrifugal models as a launching mechanism for the jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا