ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronization in Nuclei - Multidimensional Study

51   0   0.0 ( 0 )
 نشر من قبل Inti Lehmann
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Inti Lehmann




اسأل ChatGPT حول البحث

Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton and xenon targets relative to deuterium at an electron-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the virtual-photon energy nu, its virtuality Q2, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p_t . Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. These results will help to constrain mechanisms and models of hadronization much more decisively than by the use of integrated results as traditionally done. A few features particular to the two-dimensional representation are highlighted in this contribution.

قيم البحث

اقرأ أيضاً

Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the vir tual-photon energy nu, its virtuality Q2, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction pt . Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z > 0.4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with nu as exhibited by pions and negative kaons. Protons were found to behave very differently from the other hadrons.
In relativistic nuclear collisions the production of hadrons with light (u,d,s) quarks is quantitatively described in the framework of the Statistical Hadronization Model (SHM). Charm quarks are dominantly produced in initial hard collisions but inte ract strongly in the hot fireball and thermalize. Therefore charmed hadrons can be incorporated into the SHM by treating charm quarks as impurities with thermal distributions, while the total charm content of the fireball is fixed by the measured open charm cross section. We call this model SHMc and demonstrate that with SHMc the measured multiplicities of single charm hadrons in lead-lead collisions at LHC energies can be well described with the same thermal parameters as for (u,d,s) hadrons. Furthermore, transverse momentum distributions are computed in a blast-wave model, which includes the resonance decay kinematics. SHMc is extended to lighter collision systems down to oxygen-oxygen and includes doubly- and triply-charmed hadrons. We show predictions for production probabilities of such states exhibiting a characteristic and quite spectacular enhancement hierarchy.
42 - Stephan Paul 2009
Precision experiments at low energies probing weak interaction are a very promising and complementary tool for investigating the structure of the electro-weak sector of the standard model, and for searching for new phenomena revealing signs for an un derlaying new symmetry. With the advent of new technologies in particle trapping and production of beams for exotic nuclei as well as ultracold neutrons, we expect one or two orders of magnitude gain in precision. This corresponds to the progress expected by new high luminosity B-factories or the LHC. Domains studied are $beta$-decays where decay correlations, partial or total decay rates may reveal the nature of the left-right structure of the interaction and the investigation of discrete symmetries. Here the search for a finite electric dipole moment which, due to its CP-violating nature were sensational by itself, could shed light on the structure of the vacuum at very small distances. Last but not least ideas of a mirror world can be extended to the sector of baryons which can be studied with neutrons.
81 - Jiaxing Zhao , Shuzhe Shi , Nu Xu 2020
Heavy flavor supplies a chance to constrain and improve the hadronization mechanism. We have established a sequential coalescence model with charm conservation and applied it to the charmed hadron production in heavy ion collisions. The charm conserv ation enhances the earlier hadron production and suppresses the later production. This relative enhancement (suppression) changes significantly the ratios between charmed hadrons in heavy ion collisions.
The transverse polarization of $Lambda$ hyperons was measured in inclusive quasireal photoproduction for various target nuclei ranging from hydrogen to xenon. The data were obtained by the HERMES experiment at HERA using the 27.6 GeV lepton beam and nuclear gas targets internal to the lepton storage ring. The polarization observed is positive for light target nuclei and is compatible with zero for krypton and xenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا