ﻻ يوجد ملخص باللغة العربية
We prove several Liouville theorems for F-harmonic maps from some complete Riemannian manifolds by assuming some conditions on the Hessian of the distance function, the degrees of F(t) and the asymptotic behavior of the map at infinity. In particular, the results can be applied to F-harmonic maps from some pinched manifolds, and can deduce a Bernstein type result for an entire minimal graph.
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
In this paper, we prove that the class of bi-f-harmonic maps and that of f-biharmonic maps from a conformal manifold of dimension not equal to 2 are the same (Theorem 1.1). We also give several results on nonexistence of proper bi-f-harmonic maps and
In this short note, we use a unified method to consider the gradient estimates of the positive solution to the following nonlinear elliptic equation $Delta u + au^{p+1}=0$ defined on a complete noncompact Riemannian manifold $(M, g)$ where $a > 0$ an
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $.
We continue our study [Ou4] of f-biharmonic maps and f-biharmonic submanifolds by exploring the applications of f-biharmonic maps and the relationships among biharmonicity, f-biharmonicity and conformality of maps between Riemannian manifolds. We are