ﻻ يوجد ملخص باللغة العربية
The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages --- which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea --- exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, that cannot occur in single-stage contagion models. We find that cascades --- and hence collective action --- can be driven not only by high-stage influencers but also by low-stage influencers.
Since the publication of Complex Contagions and the Weakness of Long Ties in 2007, complex contagions have been studied across an enormous variety of social domains. In reviewing this decade of research, we discuss recent advancements in applied stud
A major strategy to prevent the spread of COVID-19 is through the limiting of in-person contacts. However, for the many disabled people who live in the community and require caregivers to assist them with activities of daily living, limiting contacts
During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spre
In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay networks in which tie strength increases instantaneously when there is an interaction and decays exponentially between interactions. Specifica
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether a disease will eventually infect a large fraction of a population. Because network structure typically changes in time, which fundamen