ترغب بنشر مسار تعليمي؟ اضغط هنا

CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

157   0   0.0 ( 0 )
 نشر من قبل Sebastian F. Sanchez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of $sim600$ galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of $sim1.3sqarcmin$, with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {AA}, using two overlapping setups (V500 and V1200), with different resolutions: Rsim850 and Rsim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

قيم البحث

اقرأ أيضاً

We present the first public data release of the CALIFA survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005<z<0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on the 3 .5m telescope at the Calar Alto observatory. The galaxies in DR1 already cover a wide range of properties in color-magnitude space, morphological type, stellar mass, and gas ionization conditions. This offers the potential to tackle a variety of open questions in galaxy evolution using spatially resolved spectroscopy. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the nominal wavelength range 3745-7500A with a spectral resolution of 6.0A (FWHM), and (ii) a medium-resolution V1200 setup covering the nominal wavelength range 3650-4840A with a spectral resolution of 2.3A (FWHM). We present the characteristics and data structure of the CALIFA datasets that should be taken into account for scientific exploitation of the data, in particular the effects of vignetting, bad pixels and spatially correlated noise. The data quality test for all 100 galaxies showed that we reach a median limiting continuum sensitivity of 1.0x10^-18erg/s/cm^2/A/arcsec^2 at 5635A and 2.2x10^-18erg/s/cm^2/A/arcsec^2 at 4500A for the V500 and V1200 setup respectively, which corresponds to limiting r and g band surface brightnesses of 23.6mag/arcsec^2 and 23.4mag/arcsec^2, or an unresolved emission-line flux detection limit of roughly 1x10^-17erg/s/cm^2/arcsec^2 and 0.6x10^-17erg/s/cm^2/arcsec^2, respectively. The median spatial resolution is 3.7, and the absolute spectrophotometric calibration is better than 15% (1sigma). We also describe the available interfaces and tools that allow easy access to this first public CALIFA data.
This paper describes the Third Public Data Release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the Second Public Data Release (DR2). Da ta were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto Observatory. Three different spectral setups are available, i) a low-resolution V500 setup covering the wavelength range 3749-7500 AA (4240-7140 AA unvignetted) with a spectral resolution of 6.0 AA (FWHM), for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 AA (3650-4620 AA unvignetted) with a spectral resolution of 2.3 AA (FWHM), for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO), with a spectral resolution of 6.0 AA and a wavelength range between 3700-7500 AA (3700-7140 AA unvignetted), for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar mass, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improv
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a stand ard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4% and 1.2% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.
We present a new catalog of HII regions based on the integral field spectroscopy (IFS) data of the extended CALIFA and PISCO samples. The selection of HII regions was based on two assumptions: a clumpy structure with high contrast of H$alpha$ emissio n and an underlying stellar population comprising young stars. The catalog provides the spectroscopic information of 26,408 individual regions corresponding to 924 galaxies, including the flux intensities and equivalent widths of 51 emission lines covering the wavelength range between 3745-7200A. To our knowledge, this is the largest catalog of spectroscopic properties of HII regions. We explore a new approach to decontaminate the emission lines from diffuse ionized gas contribution. This diffuse gas correction was estimated to correct every emission line within the considered spectral range. With the catalog of HII regions corrected, new demarcation lines are proposed for the classical diagnostic diagrams. Finally, we study the properties of the underlying stellar populations of the HII regions. It was found that there is a direct relationship between the ionization conditions on the nebulae and the properties of stellar populations besides the physicals condition on the ionized regions.
111 - J.-S. Huang 2001
We present K-band number counts for the faint galaxies in the Calar Alto Deep Imaging Survey (CADIS). We covered 4 CADIS fields, a total area of 0.2deg^2, in the broad band filters B, R and K. We detect about 4000 galaxies in the K-band images, with a completeness limit of K=19.75mag, and derive the K-band galaxy number counts in the range of 14.25 < K < 19.75mag. This is the largest medium deep K-band survey to date in this magnitude range. The B- and R-band number counts are also derived, down to completeness limits of B=24.75mag and R=23.25mag. The K-selected galaxies in this magnitude range are of particular interest, since some medium deep near-infrared surveys have identified breaks of both the slope of the K-band number counts and the mean B-K color at K=17sim18mag. There is, however, a significant disagreement in the K-band number counts among the existing surveys. Our large near-infrared selected galaxy sample allows us to establish the presence of a clear break in the slope at K=17.0mag from dlogN/dm = 0.64 at brighter magnitudes to dlogN/dm = 0.36 at the fainter end. We construct no-evolution and passive evolution models, and find that the passive evolution model can simultaneously fit the B-, R- and K-band number counts well. The B-K colors show a clear trend to bluer colors for K > 18mag. We also find that most of the K=18-20mag galaxies have a B-K color bluer than the prediction of a no-evolution model for an L_* Sbc galaxy, implying either significant evolution, even for massive galaxies, or the existence of an extra population of small galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا