ﻻ يوجد ملخص باللغة العربية
Exploiting the capabilities of four different surveys --- the Padova-Millennium Galaxy and Group Catalogue (PM2GC), the WIde-field Nearby Galaxy-cluster Survey (WINGS), the IMACS Cluster Building Survey (ICBS) and the ESO Distant Cluster Survey (EDisCS) --- we analyze the galaxy stellar mass distribution as a function of local density in mass-limited samples, in the field and in clusters from low (z>0.04) to high (z<0.8) redshift. We find that at all redshifts and in all environments, local density plays a role in shaping the mass distribution. In the field, it regulates the shape of the mass function at any mass above the mass limits. In clusters, it seems to be important only at low masses (log M_ast/M_sun <10.1 in WINGS and log M_ast/M_sun < 10.4 in EDisCS), otherwise it seems not to influence the mass distribution. Putting together our results with those of Calvi et al. and Vulcani et al. for the global environment, we argue that at least at $zleq 0.8$ local density is more important than global environment in determining the galaxy stellar mass distribution, suggesting that galaxy properties are not much dependent of halo mass, but do depend on local scale processes.
[Abridged] With the first 10000 spectra of the flux limited zCOSMOS sample (I<=22.5) we study the evolution of environmental effects on galaxy properties since z=1.0, and disentangle the dependence among galaxy colour, stellar mass and local density
Magnification changes the observed number counts of galaxies on the sky. This biases the observed tangential shear profiles around galaxies, the so-called galaxy-galaxy lensing (GGL) signal, and the related excess mass profile. Correspondingly, infer
The disk surface density of the nearby spiral galaxy M33 is estimated assuming that it is marginally stable against gravitational perturbations. For this purpose we used the radial profile of line-of-sight velocity dispersion of the disk planetary ne
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Obse
The metallicity and its relationship with other galactic properties is a fundamental probe of the evolution of galaxies. In this work, we select about 750,000 star-forming spatial pixels from 1122 blue galaxies in the MaNGA survey to investigate the