ﻻ يوجد ملخص باللغة العربية
We present the analysis of the galaxy stellar mass function in different environments at intermediate redshift (0.3<z<0.8) for two mass-limited galaxy samples. We use the IMACS Cluster Building Survey (ICBS), at masses M_ast >10^(10.5) M_sun, to study cluster, group, and field galaxies at z=0.3-0.45, and the ESO Distant Cluster Survey (EDisCS), at masses M_ast > 10^(10.2) M_sun, to investigate cluster and group galaxies at z=0.4-0.8. Therefore, in our analysis we include galaxies that are slightly less massive than the Milky Way. Having excluded the brightest cluster galaxies, we show thatthe shape of the mass distribution does not seem to depend on global environment. Our two main results are: (1) Galaxies in the virialized regions of clusters, in groups, and in the field follow a similar mass distribution. (2) Comparing both ICBS and EDisCS mass functions to mass functions in the local Universe, we find evolution from z~0.4-0.6 to z~0.07. The population of low-mass galaxies has proportionally grown with time with respect to that of massive galaxies. This evolution is independent of environment -- the same for clusters and the field. Furthermore, considering only clusters, we find that no differences can be detected neither within the virialized regions, nor when we compare galaxies within and outside the virial radius. Subdividing galaxies in terms of color, in clusters, groups, and field red and blue galaxies are regulated by different mass functions, but comparing separately the blue and red mass functions in different environments, no differences are detected in their shape.
We study the effects of galaxy environment on the evolution of the stellar-mass function (SMF) over 0.2 < z < 2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey and NEWFIRM Medium-Band Survey (NMBS) down to the stellar-mass completeness limit,
We present the Galaxy Stellar Mass Function (MF) up to z~1 from the zCOSMOS-bright 10k spectroscopic sample. We investigate the total MF and the contribution of ETGs and LTGs, defined by different criteria (SED, morphology or star formation). We unve
We study the stellar mass distribution for galaxies in 160 X-ray detected groups of 10^13<Log(M_200/M_sun)<2x10^14 and compare it with that of galaxies in the field, to investigate the action of environment on the build up of the stellar mass. We hig
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Obse
We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04<z<0.26. The depth and size of GAMA allows us to define samples split by colour a