ترغب بنشر مسار تعليمي؟ اضغط هنا

Absorption of Gamma-Ray Photons in a Vacuum Neutron Star Magnetosphere: I. Electron-Positron Pair Production

218   0   0.0 ( 0 )
 نشر من قبل Denis Sob'yanin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.

قيم البحث

اقرأ أيضاً

The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning - a lengthening and simultaneou sly expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 10^28. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).
We consider the electron-positron plasma generation processes in the magnetospheres of magnetars - neutron stars with strong surface magnetic fields, B = 10^(14) - 10^(15) G. We show that the photon splitting in a magnetic field, which is effective a t large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of gamma-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the P - Pdot diagram that defines the plasma generation threshold in a magnetar magnetosphere.
46 - D. N. Sobyanin 2016
The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbi trarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich-Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.
Particles in quantum vortex states (QVS) carrying definite orbital angular momenta (OAM) brings new perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understanding how OAM manifest itself between init ial particles and the outcome in vortex particle collisions becomes essential. This is made possible by applying the complete vortex description for all involved particles such that angular momenta (AM) are represented by explicit quantum numbers and their connections are naturally retrieved. We demonstrate the full-vortex quantum-electrodynamics (QED) results for the Breit-Wheeler pair creation process and derive the AM-dependent selection rule. The numerically resolved cross-sections show anti-symmetric spin polarization and most importantly, the first OAM spectra in vortex collision processes. The latter reveals efficient conversion of OAM to created pairs, leading to featured hollow and ring-shaped structure in the density distribution. These results demonstrate a clear picture in understanding the OAM physics in the scattering processes of high energy particles.
156 - Anna Barnacka 2014
We investigate potential $gamma-gamma$ absorption of gamma-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess $gamma-gamma$ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line-of-sight are unlikely to lead to significant excess $gamma-gamma$ absorption. This opens up the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxy or in our galaxy provides an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, gamma-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances (impact parameters) where the resulting $gamma-gamma$ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess $gamma-gamma$ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا