ﻻ يوجد ملخص باللغة العربية
We report calculation of heat capacity of an attractive Bose-Einstein condensate, with the number N of bosons increasing and eventually approaching the critical number Ncr for collapse, using the correlated potential harmonics (CPH) method. Boson pairs interact via the realistic van der Waals potential. It is found that the transition temperature Tc increases initially slowly, then rapidly as N becomes closer to Ncr . The peak value of heat capacity for a fixed N increases slowly with N, for N far away from Ncr . But after reaching a maximum, it starts decreasing when N approaches Ncr . The effective potential calculated by CPH method provides an insight into this strange behavior.
We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose-Einstein condensate. This is achieved by `switching off one of the two self-interaction scattering lengths, giving a two component system where the second component
We report on the observation of the confinement-induced collapse dynamics of a dipolar Bose-Einstein condensate (dBEC) in a one-dimensional optical lattice. We show that for a fixed interaction strength the collapse can be initiated in-trap by loweri
We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential of an optical-box trap. We characterise the critical point for collapse and the collapse dynamics, observing universal behaviour in agreement wit
We report on the production of a $^{41}$K-$^{87}$Rb dual-species Bose-Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime, i.e. for negative values of the interspecies scattering length $a_{12}$
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induce