ترغب بنشر مسار تعليمي؟ اضغط هنا

On Braneworld Inflation Models in Light of WMAP7 data

75   0   0.0 ( 0 )
 نشر من قبل Mohamed Bennai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are interested on studing various inflationary spectrum perturbation parameters in the context of the Randall-Sandrum type 2 Braneworld model. We consider in particular three types of potentials. We apply the slow-roll approximation in the high energy limit to constraint the parameter potentials by confronting our results to recent WMAP7 observations. We show that, for some values of the e-folding number N; the monomial potential provides the best fit results to observations data.

قيم البحث

اقرأ أيضاً

134 - R. Zarrouki , M. Bennai 2010
We consider a Chaplygin gas model with an exponential potential in framework of braneworld inflation. We apply the slow-roll approximation in the high-energy limit to derive various inflationary spectrum perturbation parameters. We show that the infl ation observables depend only on the e-folding number N and the final value of the slow-roll parameter e(end). Whereas for small running of the scalar spectral index dns/dlnk, the inflation observables are in good agreement with recent WMAP7 data.
We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an $S^1/Z_2$ orbifold. T here is a scalar field $phi$ in the bulk which, provided a superpotential $W(phi)$, determines the warped geometry of the 5-D spacetime. This type of scenario is common in string theory, where the bulk scalar field $phi$ is related to the volume of small compact extra dimensions. We show that, after the moduli are stabilized by supersymmetry breaking terms localized on the branes, the only relevant degrees of freedom in the bulk consist of a 5-D massive spectrum of gravitons. Then we analyze the gravitational interaction between massive bodies localized at the positive tension brane mediated by these bulk gravitons. It is shown that the Newtonian potential describing this interaction picks up a non-trivial contribution at short distances that depends on the shape of the superpotential $W(phi)$. We compute this contribution for dilatonic braneworld scenarios $W(phi) = e^{alpha phi}$ (where $alpha$ is a constant) and discuss the particular case of 5-D Heterotic M-theory: It is argued that a specific footprint at micron scales could be observable in the near future.
186 - Laila Alabidi , Ian Huston 2010
In this paper we summarise the status of single field models of inflation in light of the WMAP 7 data release. We find little has changed since the 5 year release, and results are consistent with previous findings. The increase in the upper bound on the running of the spectral index impacts on the status of the production of Primordial Black Holes from single field models. The lower bound on the equilateral configuration of the non-gaussianity parameter is reduced and thus the bounds on the theoretical parameters of (UV) DBI single brane models are weakened. In the case of multiple coincident branes the bounds are also weakened and the two, three or four brane cases will produce a tensor-signal that could possibly be observed in the future.
72 - Antonio Campos 2003
For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field -- the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti-de Sitter bulk.
We study localization properties of fundamental fields which are coupled to one another through the gauge mechanism both in the original Randall-Sundrum (RS) and in the modified Randall-Sundrum (MRS) braneworld models: scalar-vector, vector-vector, a nd spinor-vector configuration systems. For this purpose we derive conditions of localization, namely the finiteness of integrals over the extra coordinate in the action of the system considered. We also derive field equations for each of the systems and then obtain their solutions corresponding to the extra dimension by a separation of variable method for every field involved in each system. We then insert the obtained solutions into the conditions of localization to seek whether or not the solutions are in accordance with the conditions of localization. We obtain that not all of the configuration systems considered are localizable on the brane of the original RS model while, on the contrary, they are localizable on the MRS braneworld model with some restrictions. In terms of field localizability on the brane, this result shows that the MRS model is much better than the original RS model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا