ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing proton acceleration in W51C with MAGIC

47   0   0.0 ( 0 )
 نشر من قبل Julian Krause
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Located in a dense complex environment, W51C provides an excellent scenario to probe accelerated protons in SNRs and their interaction with surrounding target material. Here we report the observation of extended Very High Energy (VHE) gamma-ray emission from the W51C supernova remnant (SNR) with MAGIC. Detections of extended gamma-ray emission in the same region have already been reported by the Fermi and H.E.S.S. collaborations. Fermi/LAT measured the source spectrum in the energy range between 0.2 and 50 GeV, which was found to be well fit by a hadronic neutral-pion decay model. The VHE observations presented here, obtained with the improved MAGIC stereo system, allow us to pinpoint the VHE gamma-ray emission in the dense shocked molecular cloud surrounding the remnant shell. The MAGIC data also allow us to measure, for the first time, the VHE emission spectrum of W51C from the highest Fermi/LAT energies up to TeV. The spatial distribution and spectral properties of the VHE emission suggest a hadronic origin of the observed gamma rays. Therefore W51C is a prime candidate for a cosmic ray accelerator.



قيم البحث

اقرأ أيضاً

Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) detected the gamma-ray afterglow of GRB 190114C, which can constrain microscopic parameters of the shock-heated plasma emitting non-thermal emission. Focusing on the early afterglow of this event, we numerically simulate the spectrum and multi-wavelength light curves with constant and wind-like circumstellar medium using a time-dependent code. Our results show that the electron acceleration timescale at the highest energies is likely shorter than 20 times the gyroperiod to reproduce the GeV gamma-ray flux and its spectral index reported by {it Fermi}. This gives an interesting constraint on the acceleration efficiency for Weibel-mediated shocks. We also constrain the number fraction of non-thermal electrons $f_{rm e}$, and the temperature of the thermal electrons. The early optical emission can be explained by the thermal synchrotron emission with $f_{rm e} lesssim 0.01$. On the other hand, the X-ray light curves restrict efficient energy transfer from protons to the thermal electrons, and $f_{rm e}sim1$ is required if the energy fraction of the thermal electrons is larger than $sim10$%. The parameter constraints obtained in this work give important clues to probing plasma physics with relativistic shocks.
65 - Ji-Hoon Ha 2018
Collisionless shocks with low sonic Mach numbers, $M_{rm s} lesssim 4$, are expected to accelerate cosmic ray (CR) protons via diffusive shock acceleration (DSA) in the intracluster medium (ICM). However, observational evidence for CR protons in the ICM has yet to be established. Performing particle-in-cell simulations, we study the injection of protons into DSA and the early development of a nonthermal particle population in weak shocks in high $beta$ ($approx 100$) plasmas. Reflection of incident protons, self-excitation of plasma waves via CR-driven instabilities, and multiple cycles of shock drift acceleration are essential to the early acceleration of CR protons in supercritical quasi-parallel shocks. We find that only in ICM shocks with $M_{rm s} gtrsim M_{rm s}^*approx 2.25$, a sufficient fraction of incoming protons are reflected by the overshoot in the shock electric potential and magnetic mirror at locally perpendicular magnetic fields, leading to efficient excitation of magnetic waves via CR streaming instabilities and the injection into the DSA process. Since a significant fraction of ICM shocks have $M_{rm s} < M_{rm s}^*$, CR proton acceleration in the ICM might be less efficient than previously expected. This may explain why the diffuse gamma-ray emission from galaxy clusters due to proton-proton collisions has not been detected so far.
The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star p rogenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined with the interplay of non-linear processes, results in the amplification of the magnetic field at the shock front, which can adequately account for the magnetic field strengths deduced from radio monitoring of the source. The maximum particle energy can reach, and perhaps exceed, 1 PeV, depending on the dominant instability. The gamma-ray signal is found to be heavily absorbed by pair production process during the first week after the outburst. We derive the time dependent particle spectra and associated hadronic signatures of secondary particles (gamma-ray, leptons and neutrinos) arising from proton proton interactions. We find that the Cherenkov Telescope Array (CTA) should be able to detect objects like SN 1993J above 1 TeV. We predict a low neutrino flux above 10 TeV, implying a detectability horizon with current or planned neutrino telescopes of 1 Mpc.
The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes have been predicted for both the central binary and the inter action regions between jets and surrounding nebula. Also, non-thermal emission at lower energies has been previously reported. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses and precession of the circumstellar disk periodically covering the central binary system is expected to be at its minimum. The eastern and western SS433/W50 interaction regions are also examined. We aim to constrain some theoretical models previously developed for this system. We made use of dedicated observations from MAGIC and H.E.S.S. from 2006 to 2011 which were combined for the first time and accounted for a total effective observation time of 16.5 h. Gamma-ray attenuation does not affect the jet/medium interaction regions. The analysis of a larger data set amounting to 40-80 h, depending on the region, was employed. No evidence of VHE gamma-ray emission was found. Upper limits were computed for the combined data set. We place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Our findings suggest that the fraction of the jet kinetic power transferred to relativistic protons must be relatively small to explain the lack of TeV and neutrino emission from the central system. At the SS433/W50 interface, the presence of magnetic fields greater 10$mu$G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with energies up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentum-space diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا