ترغب بنشر مسار تعليمي؟ اضغط هنا

Singularities in the Kerr-Newman and charged $delta=2$ Tomimatsu-Sato spacetimes endowed with negative mass

49   0   0.0 ( 0 )
 نشر من قبل Vladimir S. Manko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kerr-Newman solution with negative mass is shown to develop a massless ring singularity off the symmetry axis. The singularity is located inside the region with closed timelike curves which has topology of a torus and lies outside the ergoregion. These characteristics are also shared by the charged Tomimatsu-Sato delta=2 solution with negative total mass to which in particular a simple form in terms of four polynomials is provided.

قيم البحث

اقرأ أيضاً

41 - V.S. Manko 2011
The physical properties of the Tomimatsu-Sato delta=2 spacetime are analyzed, with emphasis on the issues of the negative mass distribution in this spacetime and the origin of a massless ring singularity which are treated with the aid of an equatoria lly asymmetric two-body configuration arising within the framework of the analytically extended double-Kerr solution. As a by-product of this analysis it is proved analytically that the Kerr spacetime with negative mass always has a massless naked ring singularity off the symmetry axis accompanied by a region with closed timelike curves, and it is also pointed out that the Boyer-Lindquist coordinates in that case should be introduced in a different manner than in the case of the Kerr solution with positive mass.
In this paper we argue that the well-known maximal extensions of the Kerr and Kerr-Newman spacetimes characterized by a specific gluing (on disks) of two asymptotically flat regions with ADM masses of opposite signs are physically inconsistent and ac tually non-analytic. We also discover a correct geometrical interpretation of the surface $r=0$, $t={rm const}$ - a dicone in the case of the Kerr solution and a more sophisticated surface of non-zero Gaussian curvature in the case of the Kerr-Newman solution - which suggests that the problem of constructing the maximal analytic extensions for these stationary spacetimes is likely to be performed within the models with only one asymptotically flat region, in which case a smooth crossing of the ring singularity becomes possible, for instance, after carrying out an appropriate transformation of the radial coordinate.
78 - Naoto Kan , Bogeun Gwak 2021
We investigate the conjecture on the upper bound of the Lyapunov exponent for the chaotic motion of a charged particle around a Kerr-Newman black hole. The Lyapunov exponent is closely associated with the maximum of the effective potential with respe ct to the particle. We show that when the angular momenta of the black hole and particle are considered, the Lyapunov exponent can exceed the conjectured upper bound. This is because the angular momenta change the effective potential and increase the magnitude of the chaotic behavior of the particle. Furthermore, the location of the maximum is also related to the value of the Lyapunov exponent and the extremal and non-extremal states of the black hole.
This article explores the characteristics of ergoregion, horizons and circular geodesics around a Kerr-Newman-Kasuya black hole. We investigate the effect of spin and dyonic charge parameters on ergoregion, event horizon and static limit surface of t he said black hole. We observed that both electric, as well as magnetic charge parameters, results in decreasing the radii of event horizon and static limit, whereas increasing the area of ergoregion. The obtained results are compared with that acquired from Kerr and Schwarzschild black holes. Moreover, we figured out the photons orbit of circular null geodesics and studied the angular velocity of a particle within ergoregion.
66 - Zonghai Li , Junji Jia 2021
In this paper, we investigate the deflection of a charged particle moving in the equatorial plane of Kerr-Newman spacetime, focusing on weak field limit. To this end, we use the Jacobi geometry, which can be described in three equivalent forms, namel y Randers-Finsler metric, Zermelo navigation problem, and $(n+1)$-dimensional stationtary spacetime picture. Based on Randers data and Gauss-Bonnet theorem, we utilize osculating Riemannian manifold method and the generalized Jacobi metric method to study the deflection angle, respectively. In the $(n+1)$-dimensional spacetime picture, the motion of charged particle follows the null geodesic, and thus we use the standard geodesic method to calculate the deflection angle. Three methods lead to the same second-order deflection angle, which is obtained for the first time. The result shows that the black hole spin $a$ affects the deflection of charged particles both gravitationally and magnetically at the leading order (order $mathcal{O}([M]^2/b^2)$). When $qQ/E<2M$, $a$ will decrease (or increase) the deflection of prograde (or retrograde) charged signal. If $qQ/E> 2M$, the opposite happens, and the ray is divergently deflected by the lens. We also showed that the effect of the magnetic charge of the dyonic Kerr-Newman black hole on the deflection angle is independent of the particles charge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا