ﻻ يوجد ملخص باللغة العربية
We study the electrophoretic mobility of spherical particles and the electrical conductivity in salt-free concentrated suspensions including finite ion size effects. An ideal salt-free suspension is composed of just charged colloidal particles and the added counterions that counterbalance their surface charge. In a very recent paper [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960- 3968] we presented a model for the equilibrium electric double layer for this kind of suspensions considering the size of the counterions, and now we extend this work to analyze the response of the suspension under a static external electric field. The numerical results show the high importance of such corrections for moderate to high particle charges, especially when a region of closest approach of the counterions to the particle surface is considered. The present work sets the basis for further theoretical models with finite ion size corrections, concerning particularly the ac electrokinetics and rheology of such systems.
We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added c
A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Ch
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) particles of a nearly constant swelling ratio and with polydispersity indices (PDIs) varying over a wide range (7.4% - 48.9%) are synthesized to study the effects of polydispersity on the dynamics
We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (conf