ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive star formation in the GMC G345.5+1.0: Spatial distribution of the dust emission

146   0   0.0 ( 0 )
 نشر من قبل Cristian Lopez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Lopez




اسأل ChatGPT حول البحث

We attempt to make a complete census of massive-star formation within all of GMC G345.5+1.0. This cloud is located one degree above the galactic plane and at 1.8 kpc from the Sun, thus there is little superposition of dust along the line-of-sight, minimizing confusion effects in identifying individual clumps. We observed the 1.2 mm continuum emission across the whole GMC using the Swedish-ESO Submillimetre Telescope Imaging Bolometer Array mounted on the SEST. Observations have a spatial resolution of 0.2 pc and cover 1.8 degtimes 2.2 deg in the sky with a noise of 20 mJy/beam. We identify 201 clumps with diameters between 0.2 and 0.6 pc, masses between 3.0 and 1.3times10^3 Msun, and densities between 5times10^3 and 4times10^5 cm^-3. The total mass of the clumps is 1.2times10^4 Msun, thus the efficiency in forming these clumps, estimated as the ratio of the total clump mass to the total GMC mass, is 0.02. The clump mass distribution for masses between 10 and 10^3 Msun is well-fitted by a power law dN/dM proportional to M^-alpha, with a spectral mass index alpha of 1.7+/-0.1. Given their mass distribution, clumps do not appear to be the direct progenitors of single stars. Comparing the 1.2 mm continuum emission with infrared images taken by the Midcourse Space Experiment (MSX) and by the SPITZER satellite, we find that at least 20% of the clumps are forming stars, and at most 80% are starless. Six massive-star forming regions embedded in clumps and associated with IRAS point sources have mean densities of ~10^5 cm^-3, luminosities >10^3 Lsun, and spectral energy distributions that can be modeled with two dust components at different mean temperatures of 28+/-5 and 200+/-10 K.



قيم البحث

اقرأ أيضاً

In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class scheme and compared to other classificat ions based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high density layer also shows signs of extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming an spontaneous origin for the isolated massive star(s) powering KR 140.
We simulate the collision of two Giant Molecular Clouds (GMCs) using the movingmesh magnetohydrodynamical (MHD) code AREPO. We perform a small parameterspace study on how GMC collisions affect the star formation rate (SFR). The pa-rameters we conside r are relative velocity, magnetic field inclination and simulationresolution. From the collsional velocity study we find that a faster collision causes starformation to trigger earlier, however, the overall trend in star formation rate integratethrough time is similar for all. This contradicts the claim that the SFR significantlyincreases as a result of a cloud collision. From varying the magnetic field inclinationwe conclude that the onset of star formation occurs sooner if the magnetic field isparallel to the collisional axis. Resolution tests suggests that higher resolution delaysthe onset of star formation due to the small scale turbulence being more resolved.
We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* > 10^{10.3} M_odot$) UVJ-selected galaxies at redshifts of $1.0 < z < 1.3$, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multi-wavelength photo metry. By the use of a sophisticated physical plus systematic uncertainties model, constructed within the Bagpipes code, we place strong constraints on the star-formation histories (SFHs) of individual objects. We firstly constrain the stellar mass vs stellar age relationship, finding a steep trend towards earlier average formation with increasing stellar mass of $1.48^{+0.34}_{-0.39}$ Gyr per decade in mass, although this shows signs of flattening at $M_* > 10^{11} M_odot$. We show that this is consistent with other spectroscopic studies from $0 < z < 2$. This relationship places strong constraints on the AGN-feedback models used in cosmological simulations. We demonstrate that, although the relationships predicted by Simba and IllustrisTNG agree well with observations at $z=0.1$, they are too shallow at $z=1$, predicting an evolution of $<0.5$ Gyr per decade in mass. Secondly, we consider the connections between green-valley, post-starburst and quiescent galaxies, using our inferred SFH shapes and the distributions of galaxy physical properties on the UVJ diagram. The majority of our lowest-mass galaxies ($M_* sim 10^{10.5} M_odot$) are consistent with formation in recent ($z<2$), intense starburst events, with timescales of $lesssim500$ Myr. A second class of objects experience extended star-formation epochs before rapidly quenching, passing through both green-valley and post-starburst phases. The most massive galaxies in our sample are extreme systems: already old by $z=1$, they formed at $zsim5$ and quenched by $z=3$. However, we find evidence for their continued evolution through both AGN and rejuvenated star-formation activity.
We study the emission by dust and stars in the Large and Small Magellanic Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially resolved spectral energy distributions (SEDs). This project combines Herschel Space Observatory PACS and SPIRE far-infrared photometry with other data at infrared and optical wavelengths. We build maps of dust and stellar luminosity and mass of both Magellanic Clouds, and analyze the spatial distribution of dust/stellar luminosity and mass ratios. These ratios vary considerably throughout the galaxies, generally between the range $0.01leq L_{rm dust}/L_astleq 0.6$ and $10^{-4}leq M_{rm dust}/M_astleq 4times10^{-3}$. We observe that the dust/stellar ratios depend on the interstellar medium (ISM) environment, such as the distance from currently or previously star-forming regions, and on the intensity of the interstellar radiation field (ISRF). In addition, we construct star formation rate (SFR) maps, and find that the SFR is correlated with the dust/stellar luminosity and dust temperature in both galaxies, demonstrating the relation between star formation, dust emission and heating, though these correlations exhibit substantial scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا