ﻻ يوجد ملخص باللغة العربية
We present centimeter-band total flux density and linear polarization light curves illustrating the signature of shocks during radio band outbursts associated in time with gamma-ray flares detected by the Fermi LAT. The general characteristics of the spectral evolution during these events is well-explained by new radiative transfer simulations incorporating propagating oblique shocks and assuming an initially turbulent magnetic field. This finding supports the idea that oblique shocks in the jet are a viable explanation for activity from the radio to the gamma-ray band in at least some gamma-ray flares.
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I
Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars
We investigate the spectral properties of the brightest gamma-ray flares of blazars detected by the Fermi Large Area Telescope. We search for the presence of spectral breaks and measure the spectral curvature on typical time scales of a few days. We
Blazars are strongly variable sources that occasionally show spectacular flares visible in various energy bands. These flares are often, but not always, correlated. In a number of cases the peaks of optical flares are found to be somewhat delayed wit
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet