ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Shocks as the Origin of Gamma-Ray Flares in Blazars

61   0   0.0 ( 0 )
 نشر من قبل Margo Aller
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present centimeter-band total flux density and linear polarization light curves illustrating the signature of shocks during radio band outbursts associated in time with gamma-ray flares detected by the Fermi LAT. The general characteristics of the spectral evolution during these events is well-explained by new radiative transfer simulations incorporating propagating oblique shocks and assuming an initially turbulent magnetic field. This finding supports the idea that oblique shocks in the jet are a viable explanation for activity from the radio to the gamma-ray band in at least some gamma-ray flares.

قيم البحث

اقرأ أيضاً

101 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta <~ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L_SSC <~ L_X, and from an upper limit on the efficient cooling photon energy E_cool,obs <~ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L_d. The commonly used intrinsic pair-production opacity constraint on Gamma is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Gamma*theta >~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/mm connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances, however, an extended broad-line region is an idea worth exploring.
We investigate the spectral properties of the brightest gamma-ray flares of blazars detected by the Fermi Large Area Telescope. We search for the presence of spectral breaks and measure the spectral curvature on typical time scales of a few days. We identify significant spectral breaks in fewer than half of the analyzed flares, but their parameters do not show any discernible regularities, and in particular there is no indication for gamma-ray absorption at any fixed source-frame photon energy. More interestingly, we find that the studied blazars are characterized by significant spectral variability. Gamma-ray flares of short duration are often characterized by strong spectral curvature, with the spectral peak located above 100 MeV. Since these spectral variations are observed despite excellent photon statistics, they must reflect temporal fluctuations in the energy distributions of the emitting particles. We suggest that highly regular gamma-ray spectra of blazars integrated over long time scales emerge from a superposition of many short-lived irregular components with relatively narrow spectra. This would imply that the emitting particles are accelerated in strongly turbulent environments.
Blazars are strongly variable sources that occasionally show spectacular flares visible in various energy bands. These flares are often, but not always, correlated. In a number of cases the peaks of optical flares are found to be somewhat delayed wit h respect to the gamma-ray peaks. One notable example of such a delay was found in 3C 279 by Hayashida et al. and interpreted as a result of steeper drop with distance of the energy density of external radiation field than of the magnetic energy density. In this paper we demonstrate that in general, depending on the respective energy density profile along the jet, such lags can have both signs and that they can take place for any ratio of these energy densities. We study the dependence of such lags on the ratio of these energy densities at a distance of a maximal energy dissipation in a jet, on their gradients, as well as on the time profile of the relativistic electron injection within the moving source. We show how prominent such lags can be, and what are their expected time scales. We suggest that studies of such lags can provide a powerful tool to resolve the structure of relativistic jets and their radiative environment. As an example we model the lag observed in 3C 279, showing that in this object the flare is produced at a distance of a few parsecs from the central black hole, consistent with our previous inferences based on the spectra and optical polarization properties.
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet er (mm) flux density and gamma-ray photon flux is different for different types of blazars. The flux relation between the two bands is positively correlated for quasars and does no exist for BLLacs. Furthermore, we find that the levels of gamma-ray emission in high states depend on the phase of the high frequency radio flare, with the brightest gamma-ray events coinciding with the initial stages of a mm flare. The mean observed delay from the beginning of a mm flare to the peak of the gamma-ray emission is about 70 days, which places the average location of the gamma-ray production at or downstream of the radio core. We discuss alternative scenarios for the production of gamma-rays at distances of parsecs along the length of the jet
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا