ترغب بنشر مسار تعليمي؟ اضغط هنا

The ATLAS Data Quality Defect Database System

139   0   0.0 ( 0 )
 نشر من قبل Peter Onyisi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Golling




اسأل ChatGPT حول البحث

The ATLAS experiment at the Large Hadron Collider has implemented a new system for recording information on detector status and data quality, and for transmitting this information to users performing physics analysis. This system revolves around the concept of defects, which are well-defined, fine-grained, unambiguous occurrences affecting the quality of recorded data. The motivation, implementation, and operation of this system is described.



قيم البحث

اقرأ أيضاً

144 - A. Hamilton 2010
The ATLAS trigger has been used very successfully to collect collision data during 2009 and 2010 LHC running at centre of mass energies of 900 GeV, 2.36 TeV, and 7 TeV. This paper presents the ongoing work to commission the ATLAS trigger with proton collisions, including an overview of the performance of the trigger based on extensive online running. We describe how the trigger has evolved with increasing LHC luminosity and give a brief overview of plans for forthcoming LHC running.
In this work several aspects of ATLAS RPC offline monitoring and data quality assessment are illustrated with cosmics data selected by RPC trigger. These correspond to trigger selection, front-end mapping, detection efficiency and occupancy, which ar e studied in terms of low level quantities such as: RPC off-line hits and standalone tracks. The tools and techniques presented are also extended to the forthcoming LHC p-p beam collisions.
88 - D. Calvet 2018
This article documents the characteristics of the high voltage (HV) system of the hadronic calorimeter TileCal of the ATLAS experiment. Such a system is suitable to supply reliable power distribution into particles physics detectors using a large num ber of PhotoMultiplier Tubes (PMTs). Measurements performed during the 2015 and 2016 data taking periods of the ATLAS detector show that its performance, in terms of stability and noise, fits the specifications. In particular, almost all the PMTs show a voltage instability smaller than 0.5 V corresponding to a gain stability better than 0.5%. A small amount of channels was found not working correctly. To diagnose the origin of such defects, the results of the HV measurements were compared to those obtained using a Laser system. The analysis shows that less than 0.2% of the about 10 thousand HV channels were malfunctioning.
161 - Muge Karagoz Unel 2008
The ATLAS detector at CERNs Large Hadron Collider (LHC) is equipped with a tracking system at its core (the Inner Detector, ID) consisting of silicon and gaseous straw tube detectors. The physics performance of the ID requires a precision alignment; a challenge involving complex algorithms and significant computing power. The alignment algorithms were already validated on: Combined Test Beam data, Cosmic Ray runs and simulated physics events. The alignment chain was tested on a daily basis in exercises that mimicked ATLAS data taking operations. ID commissioning after final installation into the ATLAS detector has yielded thousands of reconstructed cosmic ray tracks, which have been used for an initial alignment of the ID before the LHC start-up. A hardware system using Frequency Scanning Interferometry will be used to monitor structural deformations. Given the programme outlined here, the ATLAS Inner Detector has had a solid preparation for LHC collisions.
The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping eta-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا