ترغب بنشر مسار تعليمي؟ اضغط هنا

Decorrelation Times of Photospheric Fields and Flows

114   0   0.0 ( 0 )
 نشر من قبل Brian Welsch
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 arcsec), high-cadence ($simeq 2$ min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the {em Hinode} satellite over 12--13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval $Delta t$ between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter $sigma$ used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, $tau$. For $Delta t > tau$, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and $Delta t$.


قيم البحث

اقرأ أيضاً

The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their imp ortance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.
112 - M. Stangalini 2013
A recent study carried out on high sensitivity SUNRISE/IMAX data has reported about the existence of areas of limited flux emergence in the quiet Sun. By exploiting an independent and longer (4 hours) data set acquired by HINODE/SOT, we further inves tigate these regions by analysing their spatial distribution and relation with the supergranular flow. Our findings, while confirming the presence of these calm areas, also show that the rate of emergence of small magnetic elements is largely suppressed at the locations where the divergence of the supergranular plasma flows is positive. This means that the dead calm areas previously reported in literature are not randomly distributed over the solar photosphere but they are linked to the supergranular cells themselves. These results are discussed in the framework of the recent literature.
Recently, there have been some reports of unusually strong photospheric magnetic fields (which can reach values of over 7 kG) inferred from Hinode SOT/SP sunspot observations within penumbral regions. These superstrong penumbral fields are even large r than the strongest umbral fields on record and appear to be associated with supersonic downflows. The finding of such fields has been controversial since they seem to show up only when spatially coupled
60 - A.A. Pevtsov 2016
We employ time sequences of images observed with a G-band filter (4305{AA}) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central me-ridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in inter-granular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current he-licity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.
357 - A.C. Birch , L. Gizon 2010
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe d travel times depend critically on the ability to accurately model the effects of subsurface flows on time-distance measurements. We present a Born approximation based computation of the sensitivity of time distance travel times to weak, steady, inhomogeneous subsurface flows. Three sensitivity functions are obtained, one for each component of the 3D vector flow. We show that the depth sensitivity of travel times to horizontally uniform flows is given approximately by the kinetic energy density of the oscillation modes which contribute to the travel times. For flows with strong depth dependence, the Born approximation can give substantially different results than the ray approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا