ترغب بنشر مسار تعليمي؟ اضغط هنا

Background-free detection of trapped ions

253   0   0.0 ( 0 )
 نشر من قبل Norbert Linke Dipl. Phys.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump via the 2P3/2 level. By filtering out light on the cooling transition and detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress the scattered laser light background count rate to 1 per second while maintaining a signal of 29000 per second with moderate saturation of the cooling transition. This scheme will be particularly useful for experiments where ions are trapped in close proximity to surfaces, such as the trap electrodes in microfabricated ion traps, which leads to high background scatter from the cooling beam.

قيم البحث

اقرأ أيضاً

We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds ). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv ing fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
185 - T. Secker , N. Ewald , J. Joger 2016
We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange betwee n the atoms and a single trapped ion and find that Langevin collisions are inhibited in the ultracold regime for these repulsive interactions. Therefore, the proposed system avoids recently observed ion heating in hybrid atom-ion systems caused by coupling to the ions radio frequency trapping field and retains ultracold temperatures even in the presence of excess micromotion.
We present a quantum logic scheme to detect atomic and molecular ions in different states of angular momentum based on their magnetic $g$-factors. The state-dependent magnetic $g$-factors mean that electronic, rotational or hyperfine states may be di stinguished by their Zeeman splittings in a given magnetic field. Driving motional sidebands of a chosen Zeeman splitting enables reading out the corresponding state of angular momentum with an auxillary logic ion. As a proof-of-principle demonstration, we show that we can detect the ground electronic state of a ${^{174}}$Yb$^+$ ion using ${^{171}}$Yb$^+$ as the logic ion. Further, we can distinguish between the ${^{174}}$Yb$^+$ ion being in its ground electronic state versus the metastable ${^{2}}D_{3/2}$ state. We discuss the suitability of this scheme for the detection of rotational states in molecular ions.
We investigate the energy dynamics of non-crystallized (melted) ions, confined in a Paul trap. The non-periodic Coulomb interaction experienced by melted ions forms a medium for non-conservative energy transfer from the radio-frequency (rf) field to the ions, a process known as rf heating. We study rf heating by analyzing numerical simulations of non-crystallized ion motion in Paul trap potentials, in which the energy of the ions secular motion changes at discrete intervals, corresponding to ion-ion collisions. The analysis of these collisions is used as a basis to derive a simplified model of rf heating energy dynamics, from which we conclude that the rf heating rate is predominantly dependent on the rf field strength. We confirm the predictability of the model experimentally: Two trapped $^{40}$Ca$^{+}$ ions are deterministically driven to melt, and their fluorescence rate is used to infer the ions energy. From simulation and experimental results, we generalize which experimental parameters are required for efficient recrystallization of melted trapped ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا