ترغب بنشر مسار تعليمي؟ اضغط هنا

T2K Results and Future Plans

78   0   0.0 ( 0 )
 نشر من قبل Francesca DiLodovico
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the numu to nue appearance and the numu disappearance results, using a total of 1.43 x 10^{20} protons on target collected with the T2K experiment. T2K is long baseline neutrino experiment in Japan with detectors located at J-PARC, Tokai, and at Kamioka in the Gifu Prefecture, situated 295 km away from J-PARC. The muon neutrino beam is produced and measured at the near detectors at J-PARC whilst the neutrino rates after oscillation are measured with the Super-Kamiokande detector, at Kamioka. A total of six events pass all the selection criteria for numu to nue oscillations at the far detector Super-Kamiokande, leading to 0.03(0.04) < sin^2 2theta_{13} < 0.28(0.34) for deltaCP = 0 and normal (inverted) hierarchy at 90% C.L. The numu disappearance analysis excludes no oscillations at 4.3 sigma. At 90% C.L., the best fit values are sin^2 2theta_{23} > 0.84 and 2.1 x 10^{-3} < Delta m^2_{23} (eV^2) < 3.1 x 10^{-3}. Finally, we present an overview of the T2K plans from 2011 onwards.

قيم البحث

اقرأ أيضاً

99 - Z.G. Zhao 2000
We report the preliminary R values for all the 85 energy points scanned in the energy region of 2-5 GeV with the upgraded Beijing Spectrometer (BESII) at Beijing Electron Positron Collider (BEPC). Preliminary results from the J/psi data collected wit h both BESI and BESII are presented. Measurements of the branching fraction of the psi(2S) decays and the psi(2S) resonance parameters are reported. The future plans, i.e. significantly upgrade the machine and detector are also discussed.
271 - Peter Krizan 2011
The paper discusses future experiments at super $B$ factories. It presents the physics motivation and the tools, accelerators and detectors, and reviews the status of the two projects, SuperKEKB/Belle-II in Japan and SuperB in Italy.
89 - S. V. Cao 2018
Thank to the stable operation at intense beam power, T2K data with neutrino-mode operation almost doubled in one year. A number of critical improvements to the oscillation analysis have been introduced and resulted in an unprecedented level of sensit ivity in searching for CP violation in the neutrino sector. T2K firstly reports that the CP-conserving values of parameter $delta_{CP}$ in the PMNS mixing matrix fall out of its 2$sigma$ C.L. measured range.
The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray mission in orbit and operates in the 3-79 keV range. NuSTARs sensitivity is roughly two orders of magnitude better than previous missions in this energy band thanks t o its superb angular resolution. Since its launch in 2012 June, NuSTAR has performed excellently and observed many interesting sources including four magnetars, two rotation-powered pulsars and the cataclysmic variable AE Aquarii. NuSTAR also discovered 3.76-s pulsations from the transient source SGR J1745-29 recently found by Swift very close to the Galactic Center, clearly identifying the source as a transient magnetar. For magnetar 1E 1841-045, we show that the spectrum is well fit by an absorbed blackbody plus broken power-law model with a hard power-law photon index of ~1.3. This is consistent with previous results by INTEGRAL and RXTE. We also find an interesting double-peaked pulse profile in the 25-35 keV band. For AE Aquarii, we show that the spectrum can be described by a multi-temperature thermal model or a thermal plus non-thermal model; a multi-temperature thermal model without a non-thermal component cannot be ruled out. Furthermore, we do not see a spiky pulse profile in the hard X-ray band, as previously reported based on Suzaku observations. For other magnetars and rotation-powered pulsars observed with NuSTAR, data analysis results will be soon available.
The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا