ﻻ يوجد ملخص باللغة العربية
High resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi$_2$Se$_3$ using a recently developed high-efficiency spectrometer. The topological surface states helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.
Non-invasive local probes are needed to characterize bulk defects in binary and ternary chalcogenides. These defects contribute to the non-ideal behavior of topological insulators. We have studied bulk electronic properties via $^{125}$Te NMR in Bi$_
We reported the first spin potentiometric measurement to electrically detect spin polarization arising from spin-momentum locking in topological insulator (TI) surface states using ferromagnet/tunnel barrier contacts [1]. This method has been adopted
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should
We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light p
Granular conductors form an artificially engineered class of solid state materials wherein the microstructure can be tuned to mimic a wide range of otherwise inaccessible physical systems. At the same time, topological insulators (TIs) have become a