ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluid Neutrons in the Core of the Neutron Star in Cassiopeia A

89   0   0.0 ( 0 )
 نشر من قبل Dany Page
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dany Page




اسأل ChatGPT حول البحث

The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron stars cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.

قيم البحث

اقرأ أيضاً

The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser ved surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron stars temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.
Pulsars are rotating neutron stars that are renowned for their timing precision, although glitches can interrupt the regular timing behavior when these stars are young. Glitches are thought to be caused by interactions between normal and superfluid m atter in the star. We update our recent work on a new technique using pulsar glitch data to constrain superfluid and nuclear equation of state models, demonstrating how current and future astronomy telescopes can probe fundamental physics such as superfluidity near nuclear saturation and matter at supranuclear densities. Unlike traditional methods of measuring a stars mass by its gravitational effect on another object, our technique relies on nuclear physics knowledge and therefore allows measurement of the mass of pulsars which are in isolation.
75 - K. Postnov 2016
The enigmatic X-ray emission from the bright optical star, $gamma$ Cassiopeia, is a long-standing problem. $gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($Msim 1,M_odot$) companion of unknown nature orbiting i n the Be-disk plane. Here we apply the quasi-spherical accretion theory onto a compact magnetized star and show that if the low-mass companion of $gamma$ Cas is a fast spinning neutron star, the key observational signatures of $gamma$ Cas are remarkably well reproduced. Direct accretion onto this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed that emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from $gamma$ Cas. We suggest that $gamma$ Cas and its analogs constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of $gamma$ Cas and its analogs should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from $gamma$ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.
The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnants bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.
The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these super nova remnants. The evidence in favor of the presence of a pure carbon envelope at the neutron star surface is rather indirect and is based on the assumption that the emission is generated uniformly by the entire stellar surface. Although this assumption is supported by the absence of pulsations, the observational upper limit on the pulsed fraction is not very stringent. In an attempt to quantify this evidence, we investigate the possibility that the observed spectrum of the neutron star in HESS J1731-347 is a combination of the spectra produced in a hydrogen atmosphere of the hotspots and of the cooler remaining part of the neutron star surface. The lack of pulsations in this case has to be explained either by a sufficiently small angle between the neutron star spin axis and the line of sight, or by a sufficiently small angular distance between the hotspots and the neutron star rotation poles. As the observed flux from a non-uniformly emitting neutron star depends on the angular distribution of the radiation emerging from the atmosphere, we have computed two new grids of pure carbon and pure hydrogen atmosphere model spectra accounting for Compton scattering. Using new hydrogen models, we have evaluated the probability of a geometry that leads to a pulsed fraction below the observed upper limit to be about 8.2 %. Such a geometry thus seems to be rather improbable but cannot be excluded at this stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا