ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kobayashi-Maskawa Parametrization of Lepton Flavor Mixing and Its Application to Neutrino Oscillations in Matter

137   0   0.0 ( 0 )
 نشر من قبل Ye-Ling Zhou
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Ye-Ling Zhou




اسأل ChatGPT حول البحث

We show that the Kobayashi-Maskawa (KM) parametrization of the 3 X 3 lepton flavor mixing matrix is a useful language to describe the phenomenology of neutrino oscillations. In particular, it provides us with a convenient way to link the genuine flavor mixing parameters (theta_1, theta_2, theta_3 and delta_KM) to their effective counterparts in matter (tilde{theta}_1, tilde{theta}_2, tilde{theta}_3 and tilde{delta}_KM). We rediscover the Toshev-like relation sin tilde{delta}_KM sin 2tilde{theta}_2 = sin delta_KM sin 2theta_2 in the KM parametrization. We make reasonable analytical approximations to the exact relations between the genuine and matter-corrected flavor mixing parameters in two different experimental scenarios: (a) the neutrino beam energy E is above O(1) GeV and (b) E is below O(1) GeV. As an example, the probability of u_mu -> u_e oscillations and CP-violating effects are calculated for the upcoming NOvA and Hyper-K experiments.



قيم البحث

اقرأ أيضاً

142 - H. Fritzsch 2009
We study a model for the mass matrices of the leptons. We are ablte to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mxiing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses ar e 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and of the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.
150 - H. Fritzsch 2009
We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy - the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. we find about 40 degrees, consistent with the experiments. The mixing element, connecting the first neutrino wit the electron, is predicted to be 0.05. This prediction can soon be checked by the Daya Bay experiment.
Neutrino oscillations are now a well-stablished and deeply studied phenomena. Their mixing parameters, except for the CP phase, are measured with good accuracy. The three-neutrino oscillation picture in matter is currently of great interest due to th e different long-baseline neutrino experiments that are already running or under construction. In this work, we reanalyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are shown in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.
A complete review of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and of the experimental methods for their determination is presented. A critical analysis of the relevant experimental results, and in particular of the most recent ones, allows to improve the accuracies of all the matrix elements. A chi-square minimization with the three-family unitarity constraint on the CKM matrix is performed to test the current interpretation of the CP violating phenomena inside the Standard Model. A complete and unambiguous solution satisfying all the imposed constraints is found. As a by-product of the fit, the precision on the values of the matrix elements is further increased and it is possible to obtain estimates for the important CP violation observables $sin 2beta$, $sin 2alpha$ and $gamma$. Finally, an independent estimation of the CKM elements based on a Bayesian approach is performed. This complementary method constitutes a check of the results obtained, providing also the probability functions of the CKM elements and of the related quantities.
203 - Werner Rodejohann 2008
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا