ﻻ يوجد ملخص باللغة العربية
The Atmospheric Imaging Assembly (AIA) and the Exteme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94A and 131A AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range ll < 50A, and at the EUV wavelengths ll >130A, they significantly underestimate the observed flux in the 50-130A wavelength range. The model underestimates the observed flux by a variable factor ranging from approx 1.5, at short wavelengths below sim50A, up to approx5-7 in the sim 70-125A range. In the AIA bands covered by LETGS, i.e. 94A and 131A, we find that the observed flux can be underestimated by large factors (sim 3 and sim 1.9 respectively, for the case of Procyon presented here). We discuss the consequences for analysis of AIA data and possible empirical corrections to the AIA responses to model more realistically the coronal emission in these passbands.
Future prospects for solar spectroscopy missions operating in the extreme ultraviolet (EUV) and soft X-ray (SXR) wavelength ranges, 1.2-1600 Angstroms, are discussed. NASA is the major funder of Solar Physics missions, and brief summaries of the oppo
We present an analysis of soft X-ray (SXR) and extreme-ultraviolet (EUV) observations of solar flares with an approximate C8 GOES class. Our constraint on peak GOES SXR flux allows for the investigation of correlations between various flare parameter
We used data from the Helioseismic and Magnetic Imager (HMI), and Atmospheric Imaging Assembly (AIA) on the textit{Solar Dynamics Observatory} (SDO) to study coronal loops at small scales, emerging in the quiet Sun. With HMI line-of-sight magnetogram
During transient events such as major solar eruptions, the plasma can be far from the equilibrium ionization state because of rapid heating or cooling. Non-equilibrium ionization~(NEI) is important in rapidly evolving systems where the thermodynamica
We review the available atomic data used for interpreting and modeling X-ray observations. The applications for these data can be divided into several levels of detail, ranging from compilations which can be used with direct inspection of raw data, s