ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-Core Dynamics in Spin Vortex Pairs

72   0   0.0 ( 0 )
 نشر من قبل Vladislav Korenivski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations.

قيم البحث

اقرأ أيضاً

We report on spin-vortex pair dynamics measured at temperatures low enough to suppress stochastic core motion, thereby uncovering the highly non-linear intrinsic dynamics of the system. Our analysis shows that the decoupling of the two vortex cores i s resonant and can be enhanced by dynamic chaos. We detail the regions of the relevant parameter space, in which the various mechanisms of the resonant core-core dynamics are activated. We show that the presence of chaos can reduce the thermally-induced spread in the switching time by up to two orders of magnitude.
171 - Q.F. Xiao , J. Rudge , B.C. Choi 2006
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied to the vortex structure, additional two vortices, i.e., a circular- and an anti-vortex, are created near the original vortex core. Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at the annihilation point and propagated through the entire element; the relaxed state for the system is the single vortex state with a switched vortex core.
65 - E. Holmgren 2017
Vortex pairs in magnetic nanopillars with strongly coupled cores and pinning of one of the cores by a morphological defect, are used to perform resonant pinning spectroscopy, in which a microwave excitation applied to the nanopillar produces pinning or depinning of the cores only when the excitation is in resonance with the rotational or gyrational eigenmodes of the specific initial state of the core-core pair. The shift in the eigenmode frequencies between the pinned and depinned states is determined experimentally and explained theoretically, and illustrates the potential for multi-core spin-vortex memory with resonant writing of information on to various stable vortex pair states. Further, it is shown how the same resonant spectroscopy techniques applied to a vortex pair can be used as a sensitive nanoscale probe for characterizing morphological defects in magnetic films.
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
Effects of magnetic asymmetry on strongly coupled spin-vortex pairs with parallel core polarization and antiparallel chirality in synthetic nanomagnets are investigated. This includes vortex-core length asymmetry, biasing field asymmetry, and pinning of one of the two vortex cores. Our experimental observations as well as analytical and micromagnetic modeling show how magnetic asymmetry can be used to differentiate magneto-resistively otherwise degenerate multiple stable states of a vortex pair. These results expand the knowledge base for spin vortex arrays in nanostructures and should be useful in light of the recent proposals on coding information into multiple topological spin states, such as single and multiple vortex core/chirality states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا